Μετὰ τὴν τῶν ἐπιφανειῶν μέτρησιν εὐθυγράμμων τε καὶ μὴ κατὰ τὸ ἀκόλουθον ἐπὶ τὰ στερεὰ σώματα χωρητέον, ὧν καὶ τὰς ἐπιφανείας ἐν τῷ πρὸ τούτου βιβλίῳ ἐμετρήσαμεν ἐπιπέδους τε καὶ σφαιρικάς, ἔτι τε κωνικὰς καὶ κυλινδρικάς, πρὸς δὲ τούτοις ἀτάκτους, ὧν τὰς ἐπινοίας ὥσπερ παραδόξους οὔσας τινὲς εἰς Ἀρχιμήδην ἀναφέρουσιν κατὰ διαδοχὴν ἱστοροῦντες. εἴτε δὲ Ἀρχιμήδους εἴτε ἄλλου τινός, ἀναγκαῖον καὶ ταύτας προ‹ς›υπογράψαι, ὅπως κατὰ μηδὲν ἐνδεὴς ἡ πραγματεία τυγχάνῃ τοῖς βουλομένοις αὐτὰ μεταχειρίζεσθαι.
Στερεὸν εὐθύγραμμον ὀρθογώνιον μετρῆσαι δοθείσης ἑκάστης αὐτοῦ πλευρᾶς, μήκους τε καὶ πλάτους καὶ βάθους ἢ πάχους· οὐδὲν γὰρ διοίσει [εἰ] ἢ κοῖλον ὑπάρχον μετρεῖσθαί τι σῶμα ἢ ναστόν. βάθος μὲν γὰρ καλεῖται ἐπὶ τῶν κοίλων σωμάτων, πάχος δὲ ἐπὶ τῶν ναστῶν. ἔστω δὲ τὸ μὲν μῆκος μονάδων κ, τὸ δὲ πλάτος μονάδων ιβ, τὸ δὲ πάχος μονάδων π. ἐὰν δὴ δι' ἀλλήλων τοὺς ἀριθμοὺς πολλαπλασιάσωμεν, γίγνονται μονάδες Ϛατ. τοσούτων δὲ καὶ τὸ στερεὸν ἔσται μονάδων. τούτου δ' ἡ ἀπόδειξις φανερά. ἐὰν γὰρ τὰς τρεῖς διαστάσεις ἐπινοήσωμεν διῃρημένας εἰς μοναδιαῖα διαστήματα καὶ διὰ τῶν τομῶν ἐπίπεδα ἐκβάλωμεν παράλληλα τοῖς περιέχουσι τὸ στερεὸν ἐπιπέδοις, ἔσται ὥσπερ καταπεπρισμένον τὸ στερεὸν εἰς μοναδιαῖα στερεά, ὧν τὸ πλῆθος ἔσται ὁ εἰρημένος ἀριθμός. καὶ καθόλου δὲ πᾶν στερεὸν σχῆμα πάχος ἔχον οἱονδηποτοῦν ‹καὶ μῆκος οἱονδηποτοῦν›, τὸ δὲ ὕψος πρὸς ὀρθὰς τῇ βάσει μετρεῖται τῆς βάσεως αὐτοῦ μετρηθείσης καὶ ἐπὶ τὸ ὕψος πολλαπλασιασθείσης. οἷον· ἔστω τοῦ στερεοῦ βάσις ἔλλειψις, ἀπὸ δὲ τοῦ κέντρου τῆς ἐλλείψεως πρὸς ὀρθὰς ἐπινοείσθω τις εὐθεῖα τῷ τῆς ἐλλείψεως ἐπιπέδῳ ὕψος ἔχουσα δοθέν. τὸ δὲ τῆς ἐλλείψεως σχῆμα φερέσθω κατὰ τῆς εἰρημένης εὐθείας οὕτως, ὥστε τὸ μὲν κέντρον κατ' αὐτῆς φέρεσθαι, τὸ δὲ τῆς ἐλλείψεως ἐπίπεδον ἀεὶ παράλληλον ὑπάρχειν τῇ ἐξ ἀρχῆς θέσει. ἔσται δή τι σχῆμα ὡσπερεὶ κύλινδρος βάσιν ἔχον τὴν εἰρημένην ἔλλειψιν. τοῦ δὴ τοιούτου σχήματος τὸ ὕψος πρὸς ὀρθὰς καλῶ τῇ βάσει· ὃ δὴ μετρεῖται τῷ προειρημένῳ τρόπῳ. κἂν ἡ βάσις δὲ ἕτερον ἔχῃ σχῆμα, τὸ δὲ ὕψος πρὸς ὀρθὰς τῇ βάσει, ὡς εἴρηται, ὁμοίως μετρηθήσεται· ὥστε καὶ κύλινδρος ὡσαύτως μετρεῖται. κἂν μὴ ᾖ δὲ τὸ ὕψος τοῦ στερεοῦ πρὸς ὀρθὰς τῇ βάσει, ἀλλὰ κεκλιμένον ᾖ, τὸ δὲ στερεὸν τοιοῦτον, ὥστε τεμνόμενον ἐπιπέδῳ παραλλήλῳ τῇ βάσει ποιεῖν τομὰς ἴσας τῇ βάσει, δοθεῖσα δὲ ᾖ ἡ ἀπὸ τῆς κορυφῆς αὐτοῦ κάθετος ἀγομένη ἐπὶ τὴν βάσιν, τὸ στερεὸν ὡσαύτως λαμβάνεται. δεῖ γὰρ λαβόντα τὸ ἐμβαδὸν τῆς βάσεως αὐτοῦ πολλαπλασιάσαι ἐπὶ τὴν εἰρημένην κάθετον καὶ ἀποφαίνεσθαι τοσούτου τὸ στερεόν· τὸ δὲ εἰρημένον ‹......› ἐπιπέδῳ παραλλήλῳ τῇ βάσει ποιεῖ τομὰς τῇ βάσει ἴσας, γίγνεται οὕτως. ἐὰν ἐπὶ τῆς βάσεως αὐτοῦ εὐθεῖά τις ἐπισταθῇ ἤτοι ὀρθὴ ἢ κεκλιμένη πρὸς τὴν βάσιν καὶ μενούσης αὐτῆς ἡ τοῦ στερεοῦ βάσις φέρηται κατὰ τῆς εἰρημένης εὐθείας, ὥστε τὸ μὲν πρὸς τῇ βάσει σημεῖον κατὰ τῆς εὐθείας φέρεσθαι, τὴν δὲ βάσιν ἀεὶ φερομένην παράλληλον ἑαυτῇ διαμένειν, τὸ τοιοῦτον σχῆμα τεμνόμενον ἐπιπέδῳ παραλλήλῳ τῇ βάσει ποιήσει τομὰς τοσαύτας τῇ βάσει ἴσας, ἐπειδήπερ τῆς βάσεως ἡ φορὰ κατὰ παράλληλον αὐτῇ θέσιν ἐφέρετο.
[1] Ἔστω δὴ κῶνον μετρῆσαι, οὗ ἡ μὲν διάμετρος τῆς βάσεως ἔστω μονάδων ι, τὸ δὲ ὕψος η. ὕψος δὲ τοῦ κώνου καλῶ τὴν ἀπὸ τῆς κορυφῆς ἐπὶ τὴν βάσιν κάθετον ἀγομένην, ἐάν τε ὀρθὸς ὁ κῶνος ὑπάρχῃ ἐάν τε σκαληνός. νενοήσθω δὴ κύλινδρος ὀρθὸς ἀπὸ τῆς αὐτῆς βάσεως τῷ κώνῳ ὕψος ἔχων τὸ αὐτὸ τῷ κώνῳ. τούτου δὴ τοῦ κυλίνδρου τὸ στερεὸν ἔσται δοθέν. ἥ τε γὰρ διάμετρος αὐτοῦ τῆς βάσεως δοθεῖσά ἐστιν καὶ τὸ ὕψος δοθέν. καὶ ἔστιν, ὡς ἐμάθομεν, μονάδων χκη δζ΄. ἀλλ' ἐπεὶ πᾶς κῶνος κυλίνδρου τρίτον μέρος ἐστὶ τοῦ τὴν αὐτὴν βάσιν ἔχοντος αὐτῷ καὶ ὕψος ἴσον, ἔσται τὸ στερεὸν τοῦ κώνου μονάδων σθ ιακα΄. ὁμοίως οὖν καὶ πυραμίδος πάσης τὸ στερεὸν ληψόμεθα δοθείσης τῆς βάσεως αὐτῆς καὶ τῆς ἀπὸ τῆς κορυφῆς καθέτου ἀγομένης ἐπὶ τὸ τῆς βάσεως ἐπίπεδον, ἐπειδήπερ πᾶσα πυραμὶς τρίτον μέρος ἐστὶ τοῦ στερεοῦ τοῦ τὴν αὐτὴν βάσιν ἔχοντος αὐτῇ καὶ ὕψος ἴσον.
[2] Ἔστω δὴ κύλινδρον σκαληνὸν μετρῆσαι, οὗ ἡ μὲν διάμετρος τῆς βάσεως μονάδων ι, τὸ δὲ ὕψος μονάδων η. ὕψος δὲ καλῶ τὴν ἀπὸ τῆς ἐφέδρας αὐτοῦ κάθετον ἀγομένην ἐπὶ τὸ τῆς ἕδρας ἐπίπεδον. νενοήσθω δὴ πάλιν κύλινδρος ὀρθὸς ἀπὸ τῆς αὐτῆς βάσεως τῷ προειρημένῳ κυλίνδρῳ ὕψος ἔχων τὸ αὐτό· ἐπεὶ οὖν οἱ ἰσοϋψεῖς κῶνοι καὶ κύλινδροι πρὸς ἀλλήλους εἰσὶν ὡς αἱ βάσεις, οἱ δὲ εἰρημένοι κύλινδροι ἐπὶ τῆς αὐτῆς βάσεώς εἰσιν καὶ ὑπὸ τὸ αὐτὸ ὕψος, ἴσος ἄρα ἐστὶν ὁ ὀρθὸς κύλινδρος τῷ σκαληνῷ. τοῦ δὲ ὀρθοῦ τὸ στερεόν ἐστιν δοθέν· τό τε γὰρ ὕψος αὐτοῦ δοθέν ἐστιν καὶ ἡ διάμετρος τῆς βάσεως· καὶ ἔστι μονάδων χκη δζ΄. καὶ τοῦ σκαληνοῦ ἄρα τὸ στερεὸν τοσούτου ἔσται.
[3] Ἔστω δὴ στερεὸν παραλληλεπίπεδον μετρῆσαι τὸ ὕψος ἔχον μὴ πρὸς ὀρθὰς τῇ βάσει. ἔστω δὲ λόγου ἕνεκεν ἡ μὲν βάσις αὐτοῦ ἑξάγωνος, ‹ἰσόπλευρος καὶ ἰσογώνιος› ἡ ΑΒΓΔΕΖ, ἡ δὲ ΑΒ πλευρὰ μονάδων ι, ἡ δὲ ἀπὸ τῆς ἐφέδρας κάθετος ἀγομένη ἐπὶ τὸ τῆς ἕδρας ἐπίπεδον ἔστω μονάδων η· ἡ δὲ ἐφέδρα αὐτοῦ ἔσται ἡ ΗΘΚΛΜΝ. καὶ ἀπὸ τῆς ΗΘ ΚΛ ΜΝ κάθετοι ἤχθωσαν ἐπὶ τὸ τῆς ἕδρας ἐπίπεδον αἱ ΗΞ ΘΟ ΚΠ ΛΡ ΜΣ ΝΤ. καὶ ἐπεζεύχθωσαν αἱ ΞΟ ΟΠ ΠΡ ΡΣ ΣΤ ΤΞ· ἔσται ἄρα καὶ τὸ ΞΟΠΡΣΤ ἑξάγωνον ἰσόπλευρον καὶ ἰσογώνιον. ἐπεὶ οὖν τὰ ἐπὶ τῆς αὐτῆς βάσεως ὄντα στερεὰ παραλληλεπίπεδα καὶ ὑπὸ τὸ αὐτὸ ὕψος ἴσα ἀλλήλοις ἐστὶν, ἴσον ἄρα τὸ ΑΒΓΔΕΖΗΘΚΛΜΝ στερεὸν τῷ ΞΟΠΡΣΤΗ ΘΚΛΜΝ στερεῷ. δοθὲν δὲ τὸ ΞΟΠΡΣΤΗΘΚΛΜΝ. δοθὲν ἄρα καὶ τὸ ΑΒΓΔΕΖΗΚΛΜΝ. ὥστε δεήσει λαβόντα τὸ ἐμβαδὸν τοῦ ΑΒΓΔΕΖ ἑξαγώνου πολλαπλασιάσαι ἐπὶ τὴν εἰρημένην κάθετον, τουτέστι τὰς η μονάδας, καὶ τοσούτου τὸ στερεὸν ἀποφήνασθαι. καὶ οἵαν δ' ἂν ἔχῃ βάσιν τὸ στερεὸν, ὡσαύτως μετρεῖται.
[4] Ἔστω πρίσμα, οὗ βάσις μέν ἐστι τὸ ΑΒΓΔ παραλληλόγραμμον, κορυφὴ δὲ ἡ ΕΖ εὐθεῖα. καὶ ἔστω ἡ μὲν ΑΒ μονάδων ι, ἡ δὲ ΒΓ μονάδων η, ἡ δὲ ἀπὸ τῆς ΕΖ κορυφῆς κάθετος ἀγομένη ἐπὶ τὸ ΑΒΓΔ ἐπίπεδον ἔστω μονάδων ε· εὑρεῖν τὸ στερεὸν τοῦ πρίσματος. συμπεπληρώσθω τὸ ΑΒΓΔΕΖΗΘ στερεὸν παραλληλεπίπεδον· τὸ ἄρα ΑΒΓΔΕΖΗΘ στερεὸν παραλληλεπίπεδον διπλάσιόν ἐστι τοῦ ΑΒΓΔΕΖ[Η] πρίσματος. δοθὲν δὲ τὸ στερεὸν παραλληλεπίπεδον· δοθὲν ἄρα καὶ τὸ πρίσμα. ὥστε δεήσει τὰ η ἐπὶ τὰ ι πολλαπλασιάσαι καὶ τὰ γενόμενα ἐπὶ τὴν κάθετον, τουτέστι τὸν ε· γίγνεται υ. τούτων τὸ ἥμισυ γίγνεται σ. τοσούτου ἔσται τὸ ἐμβαδὸν τοῦ πρίσματος.
[5] Ἔστω δὴ πυραμίδα μετρῆσαι βάσιν ἔχουσαν οἵαν δήποτε οὖν. ἔστω δὲ ὑποδείγματος ἕνεκεν πεντάγωνον ἰσόπλευρον ‹καὶ ἰσογώνιον›, οὗ ἑκάστη πλευρὰ ἔστω μονάδων ι, ἡ δὲ ἀπὸ τῆς κορυφῆς κάθετος ἀγομένη[ς] ἐπὶ τὸ τῆς βάσεως ἐπίπεδον μονάδων η. ἐπεὶ οὖν πᾶσα πυραμὶς τρίτον μέρος ἐδείχθη τοῦ στερεοῦ τοῦ τὴν αὐτὴν βάσιν ἔχοντος αὐτῇ καὶ ὕψος ἴσον, τὸ δὲ στερεὸν τὸ ἔχον βάσιν πεντάγωνον ἰσόπλευρον καὶ ἰσογώνιον, οὗ ἑκάστη πλευρὰ μονάδων ι καὶ ὕψος η, γίγνεται, ὡς ἐμάθομεν, μονάδων Ϛατλγ γ΄· ὥστε τούτων τὸ γ΄ γίγνεται μονάδων υμδ γ΄ θ΄· τοσούτου ἔσται τὸ τῆς πυραμίδος στερεόν. ὥστε καθόλου δεῖ λαβόντα τὸ ἐμβαδὸν τῆς βάσεως τῆς πυραμίδος, οἵα τις ἂν ‹ᾖ›, πολλαπλασιάσαι ἐπὶ τὴν ἀπὸ τῆς κορυφῆς αὐτῆς κάθετον ἀγομένην, τουτέστιν ἐπὶ τὸ ὕψος, καὶ τῶν γενομένων τὸ τρίτον λαβόντα ἀποφαίνεσθαι τὸ τῆς πυραμίδος στερεόν.
[6] Ἔστω δὴ πυραμίδα κόλουρον μετρῆσαι τρίγωνον ἔχουσαν βάσιν· ἔσται δὴ καὶ ἡ κορυφὴ αὐτῆς τρίγωνος ὁμοία τῇ βάσει. ἔστω οὖν ἡ μὲν βάσις αὐτῆς τὸ ΑΒΓ τρίγωνον [ὅμοιον τῷ ΑΒΓ], ἡ δὲ κορυφὴ τὸ ΔΕΖ τρίγωνον ὅμοιον τῷ ΑΒΓ. ἔστω δὲ ἡ μὲν ΑΒ μονάδων ιη, ἡ δὲ ΒΓ κδ, ἡ δὲ ΑΓ λϚ, ἡ δὲ ΔΕ ιμ· ὥστε ἔσται ἡ μὲν ΕΖ ιϚ, ἡ δὲ ΔΖ κδ. ἔστω δὴ καὶ ἡ ἀπὸ τοῦ ΔΕΖ τριγώνου κάθετος ἐπὶ τὴν βάσιν μονάδων ι. κείσθω τῇ μὲν ΔΕ ἴση ἡ ΑΗ, τῇ δὲ ΕΖ ἡ ΓΘ, καὶ ἐπεζεύχθω ἡ ΗΘ, καὶ τετμήσθωσαν δίχα αἱ ΒΘ ΒΗ τοῖς Κ, Λ σημείοις, καὶ διὰ τοῦ Κ τῇ ΒΓ παράλληλος ἤχθω ἡ ΚΜ, καὶ ἐπεζεύχθω ἡ ΛΝ καὶ ἐκβεβλήσθω ἐπὶ τὸ Ξ, καὶ ἐπεζεύχθω ἡ ΚΛ. ἐπεὶ οὖν ὅμοιά ἐστι τὰ ΑΒΓ ΔΕΖ τρίγωνα, ὡς ἔστιν ἡ ΑΒ πρὸς ΔΕ, τουτέστι πρὸς ΑΗ, οὕτως ἡ ΒΓ πρὸς ΕΖ, τουτέστι πρὸς ΓΘ. παράλληλος ἄρα ἡ ΑΓ τῇ ΗΘ. καὶ ἐπεὶ ἴσαι εἰσὶν αἱ ΗΚ ΚΒ καὶ παράλληλοι αἱ ΚΝΜ ΒΘ, ἴση ἄρα καὶ ἡ ΝΗ τῇ ΝΘ. ἀλλὰ καὶ ἡ ΒΛ τῇ ΛΘ. παράλληλος ἄρα ἡ ΛΝΞ τῇ ΑΒ. ἀλλὰ καὶ ἡ ΚΛ τῇ ΗΘ, τουτέστι τῇ ΑΓ. παραλληλόγραμμα ἄρα ἐστὶν τὰ ΑΚΛΞ ΚΛΓΜ καὶ ἴσα ἐστίν· ἐπί τε γὰρ τῆς αὐτῆς βάσεώς εἰσιν καὶ ἐν ταῖς αὐταῖς παραλλήλοις. διὰ τὰ αὐτὰ δὴ καὶ τὸ ΗΚΛΝ τῷ ΝΚΛΘ ἴσον ἐστί. λοιπὸν τὸ ΑΗΝΞ παραλληλόγραμμον [τῶ] τῷ ΝΘΓΜ παραλληλογράμμῳ ἐστὶν ἴσον. καὶ ἐπεὶ ἴση ἐστὶν ἡ μὲν ΑΗ, τουτέστιν ἡ ΝΞ, τῇ ΔΕ, ἡ δὲ ΓΘ, τουτέστιν ἡ ΜΝ, τῇ ΕΖ καὶ ἴσας γωνίας περιέχουσιν, ἴση ἄρα ἐστὶν καὶ ἡ ΞΜ τῇ ΔΖ. καὶ ἐπεὶ ἴση ἐστὶν ἡ ΚΛ ἑκατέρᾳ τῶν ΑΞ ΜΓ, ἴση ἄρα καὶ ἡ ΑΞ τῇ ΜΓ. συναμφοτέρου ‹ἄρα› τῆς ΑΓ ΜΞ, τουτέστι συναμφοτέρου ‹τῆς› ΑΓ ΔΖ ἡμίσειά ἐστιν ἡ ΓΞ. πάλιν ἐπεὶ ἴση ἐστὶν ἡ ΚΒ τῇ ΚΗ, συναμφοτέρου ἄρα τῆς ΒΑ ΗΑ, τουτέστι συναμφοτέρου τῆς ΑΒ ΔΕ, ἡμίσειά ἐστιν ἡ ΑΚ, τουτέστιν ἡ ΞΛ. διὰ τὰ αὐτὰ δὴ καὶ συναμφοτέρου τῆς ΒΓ ΕΖ ἡμίσειά ἐστιν ἡ ΛΓ. ἐπεὶ οὖν τὸ στερεὸν τῆς κολούρου πυραμίδος σύγκειται ἔκ τε τοῦ πρίσματος τοῦ [τὴν] βάσιν μὲν ἔχοντος τὸ ΑΗΝΞ παραλληλόγραμμον, κορυφὴν δὲ τὴν ΔΕ εὐθεῖαν, καὶ τοῦ πρίσματος, οὗ βάσις μέν ἐστι τὸ ΜΝΘΓ παραλληλόγραμμον, κορυφὴ δὲ ἡ ΕΖ εὐθεῖα, καὶ ἑτέρου πρίσματος, οὗ βάσις μέν ἐστι ‹τὸ› ΜΝΞ τρίγωνον, κορυφὴ δὲ τὸ ΔΕΖ, καὶ ἔτι τῆς πυραμίδος, ἧς βάσις τὸ ΒΗΘ τρίγωνον, κορυφὴ δὲ τὸ Ε σημεῖον· ἀλλὰ τῶν μὲν πρισμάτων, ὧν βάσις ἐστὶ τὰ ΑΗΝΞ ΝΘΓΜ παραλληλόγραμμα, ὕψος δὲ τὸ αὐτὸ τῇ πυραμίδι τὸ στερεόν ἐστιν τὸ ἐμβαδὸν τοῦ ΝΜΘΓ παραλληλογράμμου ἐπὶ τὴν κάθετον, τοῦ δὲ πρίσματος, οὗ βάσις μέν ἐστι τὸ ΜΝΞ τρίγωνον, κορυφὴ δὲ τὸ ΔΕΖ, τὸ στερεόν ἐστι τὸ ΜΝΞ τρίγωνον ἐπὶ τὴν κάθετον, τῆς δὲ πυραμίδος, ἧς βάσις ἐστὶ τὸ ΒΗΘ τρίγωνον, κορυφὴ δὲ τὸ Ε σημεῖον, τὸ στερεόν ἐστι τὸ τρίτον ‹τοῦ› τοῦ ΒΗΘ τριγώνου ἐμβαδοῦ ἐπὶ τὴν κάθετον, τὸ δὲ τρίτον τοῦ ΒΗΘ τριγώνου ἓν καὶ τρίτον ἐστὶ τοῦ ΛΝΘ ‹διὰ τὸ› ἴσα εἶναι ‹....›, τὸ δὲ τρίτον τοῦ ΛΝΘ τριγώνου τὸ δωδέκατόν ἐστι τοῦ ΒΗΘ τριγώνου· ὥστε τῆς κολούρου πυραμίδος τὸ στερεόν ἐστι τὸ ἐμβαδὸν τοῦ ΞΛΓ τριγώνου προσλαβὸν τὸ ιβ΄ μέρος τοῦ ΒΗΘ τριγώνου καὶ πολλαπλασιασθὲν ἐπὶ τὴν κάθετον. καὶ ἔστιν ἡ κάθετος δοθεῖσα. δεῖξαι ἄρα δεῖ, ὅτι δοθέν ἐστι καὶ τὸ ΞΛΓ τρίγωνον καὶ ‹τὸ ιβ΄› τοῦ ΒΗΘ· ἐπεὶ οὖν δοθεῖσά ἐστι συναμφότερος ἡ ΑΒ Δ‹Ε κ›αὶ ἐδείχθη αὐτῆς ἡμίσεια ἡ ΞΛ, δοθεῖσα ἄρα καὶ ἡ ΞΛ. διὰ τὰ αὐτὰ δὴ καὶ ἑκατέρα τῶν ΛΓ ΓΞ ἐστὶ δοθεῖσα· ὥστε δοθέν ἐστι τὸ ΞΛΓ τρίγωνον. πάλιν ἐπεὶ δοθεῖσά ἐστιν ἑκατέρα τῶν ΒΑ ΑΗ, δοθεῖσα ἄρα καὶ ἡ ΒΗ. διὰ τὰ αὐτὰ δὴ καὶ ἡ ΒΘ. πάλιν ἐπεὶ δοθεῖσα ἑκατέρα τῶν ΑΓ ΜΞ, καὶ λοιπὴ ἄρα συναμφότερος ἡ ΑΞ ΜΓ δοθεῖσα, τουτέστιν ἡ ΗΘ. δοθὲν ἄρα καὶ τὸ ΗΘΒ τρίγωνον· ὥστε καὶ τὸ ιβ΄ αὐτοῦ δοθέν. συντεθήσεται δὲ οὕτως. σύνθες τὰ ιη καὶ τὰ ιβ· καὶ τῶν γενομένων τὸ ἥμισυ γίγνεται ιε· καὶ τὰ κδ καὶ ιϚ· ὧν ἥμισυ γίγνεται κ. καὶ λϚ καὶ κδ· ὧν ἥμισυ γίγνεται λ. καὶ μέτρησον τρίγωνον, οὗ πλευραὶ ιε, κ, λ· γίγνεται, ὡς ἐμάθομεν, ἔγγιστα ρλα δ΄. καὶ ἄφελε ἀπὸ τῶν ιη τὰ ιβ· λοιπὰ Ϛ. καὶ ἀπὸ τῶν κδ τὰ ιϚ· λοιπὰ η. καὶ ἀπὸ τῶν λϚ τὰ κδ· λοιπὰ ιβ. καὶ μέτρησον τρίγων‹ον›, οὗ πλευραὶ Ϛ, η, ιβ· ἔσται ὁμοίως, ὡς ἐμάθομεν, κα ἔγγιστα· τούτων τὸ ιβ΄· γίγνεται αϚδ΄. πρόσθες ταῖς ρλα δ΄· γίγνονται ρλγ. ταῦτα ἐπὶ τὴν κάθετον, καὶ τοσούτου ἔσται τὸ στερεὸν τῆς ΑΒΓΔΕΖ κολούρου πυραμίδος.
[7] Στερεὸν μετρῆσαι περιεχόμενον ὑπὸ ἐπιπέδων τριγώνους ἔχον βάσεις. ἔστω τὸ εἰρημένον στερεὸν, οὗ βάσις μὲν τὸ ΑΒΓ τρίγωνον, κορυφὴ δὲ τὸ ΔΕΖ, παράλληλον ‹δὲ› τῷ ΑΒΓ τὸ[υ] ΔΕΖ. ἐπίπεδα δὲ ἔστω τὰ ΑΒΔΕ ΒΓ‹ΕΖ Α›ΓΔΖ. καὶ δοθεῖσα ‹...› ἑκάστη τῶν Α ‹...› Α ΔΕ ΕΖ ΖΔ καὶ ἔτι ἡ ἀπὸ τοῦ ΔΕΖ ἐπιπέδου κάθετος ἀγομένη ἐπὶ τὸ τοῦ ΑΒΓ τριγώνου ἐπίπεδον. ἐπεὶ γὰρ παράλληλός ἐστιν ἡ ΑΓ τῇ ΕΖ καὶ μείζων ἡ ΒΓ, αἱ ἄρα ΒΕ ΓΖ ἐκβαλλόμεναι συμπεσοῦνται. συμπιπτέτωσαν κατὰ τὸ Η. λέγω δὴ ὅτι καὶ ἡ ΑΔ ἐκβαλ‹λ›ομένη συμπεσεῖται κατὰ τὸ Η. ὅτι μὲν οὖν ἑκατέρα τῶν ΒΕ ΓΖ συμπίπτει τῇ ΑΔ, φανερὸν διὰ τὸ εἶναι τὴν μὲν ΑΒ μείζονα τῆς ΔΕ, τὴν δὲ ΑΓ τῆς ΔΖ. λέγω ὅτι κατὰ τὸ Η. ἐπεὶ γὰρ ΑΔΗ σημεῖα ἔν τε τῷ διὰ τῶν ΑΒ ΔΕ ἐστὶν ἐπιπέδῳ καὶ ἐν τῷ διὰ τῶν ΑΓ ΔΖ, εὐθεῖα ἄρα ἐστὶν ἡ ΑΔΗ. ἤχθω δὴ ἀπὸ τοῦ Η κάθετος ἐπὶ τὸ ΑΒΓ ἐπίπεδον καὶ ἐμβαλλέτω κατὰ τὸ Θ, τῷ δὲ ΔΕΖ κατὰ τὸ Κ· καὶ ἐπεζεύχθωσαν αἱ ΓΘ‹ΖΚ›. παράλληλος ἄρα ἐστὶν ἡ ΓΘ τῇ ΖΚ· ἀλλὰ καὶ ἡ ΒΓ τῇ ΕΖ. ἔσται ἄρα ὡς ἡ ΒΓ πρὸς ΕΖ, οὕτως ἡ ΓΗ πρὸς ΗΖ, τουτέστιν ἡ ΘΗ πρὸς ΗΚ. λόγος δὲ τῆς ΒΓ πρὸς ΕΖ δοθείς· δοθεῖσα γὰρ ἑκατέρα. λόγος ἄρα καὶ τῆς ΗΘ πρὸς ΗΚ δοθείς. ὥστε καὶ τῆς ΘΚ πρὸς ΚΗ. καὶ ἔστι δοθεῖσα ἡ ΘΚ· ἡ γὰρ ἀπὸ τοῦ ΔΕΖ ἐπιπέδου κάθετος ἐπὶ τὸ τοῦ ΑΒΓ τριγώνου ἐπίπεδον δοθεῖσά ἐστιν· δοθεῖσα ἄρα καὶ ἡ ΚΗ. ὥστε καὶ ἡ ΗΘ δοθεῖσά ἐστιν. ἐπεὶ οὖν πυραμίδος, ἧς βάσις μέν ἐστι τὸ ΑΒΓ τρίγωνον, κορυφὴ δὲ τὸ Η σημεῖον, δέδοται ἥ τε βάσις καὶ ἡ ἀπὸ τῆς κορυφῆς ἐπὶ τὴν βάσιν κάθετος ἡ ΗΘ, δοθὲν ἄρα τὸ τῆς πυραμίδος στερεόν. κατὰ τὰ αὐτὰ δὴ καὶ τὸ τῆς πυραμίδος στερεόν, ἧς βάσις μέν ἐστι τὸ ΔΕΖ τρίγωνον, κορυφὴ δὲ τὸ Η σημεῖον, δοθέν ἐστι. λοιπὸν ἄρα τὸ ΑΒΓΔΕΖ στερεὸν δοθέν ἐστι. συντεθήσεται δὴ οὕτως. δεῖ τὴν ΘΚ ποιῆσαι ὡς τὴν ΒΓ πρὸς ΕΖ προστεθείσης τῆς ΚΗ τὴν ΘΗ πρὸς ΗΚ. καὶ εὑρόντα ἑκατέραν τῶν καθέτων τῶν ΗΘ ΗΚ καθ' ἑαυτὰς μετρῆσαι ἑκατέραν πυραμίδα, ἧς τε βάσις τὸ ΑΒΓ τρίγων‹ον› καὶ ἧς βάσις τὸ ΔΕΖ, κορυφὴ δὲ τὸ Η σημεῖον, καὶ τὴν ὑπεροχὴν αὐτῶν ἀποφαίνεσθαι ἴσην εἶναι τῷ ζητουμένῳ στερεῷ. καὶ καθόλου δὲ πᾶσα πυραμὶς κόλουρος βάσιν ἔχουσα οἱανδήποτε ὡσαύτως μετρεῖται· ἐκ γὰρ τοῦ λόγου, οὗ ἔχει μία πλευρὰ τῆς βάσεως πρὸς τὴν ὁμόλογον ἐν τῇ κορυφῇ οὖσαν, λέγω δὲ τῇ ἐφέδρᾳ, εὑρεθήσεται ἡ κορυφὴ τῆς πυραμίδος, ἧς τμῆμά ἐστιν ἡ κόλουρος, καὶ ἡ κάθετος ἐπὶ τὸ τῆς ἐφέδρας ἐπίπεδον. ἔχοντες οὖν καὶ τὴν ἐπὶ τὴν ἐφέδραν καὶ τὸ λοιπὸν ἕξομεν στερεὸν τῆς ἀποτεμνομένης πυραμίδος· ὥστε πάλιν τὴν ὅλην μετρήσαντες πυραμίδα ἀφελοῦμεν τὴν ἀποτεμνομένην καὶ τὸ λοιπὸν ἀποφα[ι]νούμεθα στερεὸν τῆς κολούρου πυραμίδος.
[8] Ἔστω δὲ στερεὸν μετρῆσαι ὑπὸ εὐθυγράμμων περιεχόμενον ἐπιπέδων, οὗ βάσις ἔστω τὸ ΑΒΓΔ παραλληλόγραμμον ὀρθογώνιον, κορυφὴ δὲ τὸ ΕΖΗΘ παραλληλόγραμμον ὀρθογώνιον ἤτοι ὅμοιον τῷ ΑΒΓΔ ἢ μή. καὶ κείσθω τῇ μὲν ΕΖ ἴση ἡ ΑΚ, τῇ δὲ ΖΘ ἡ ΒΛ. καὶ τετμήσθωσαν αἱ ΒΚ ΓΛ δίχα τοῖς Φ, Χ καὶ παράλληλοι ἤχθωσαν αἱ ΚΥ, ΦΜ, ΛΝ, ΧΤ. καὶ ἐπεζεύχθωσαν αἱ ΖΚ ΗΡ ΛΗ ΗΝ ΘΝ. τὸ δὴ εἰρημένον στερεὸν ἔσται κατατετμημένον εἴς τε στερεὸν παραλληλεπίπεδον, οὗ βάσις μὲν τὸ ΑΡ παραλληλόγραμμον ὀρθογώνιον, κορυφὴ δὲ τὸ ΕΗ, καὶ πρίσμα, οὗ βάσις μὲν τὸ ΚΛ παραλληλόγραμμον ὀρθογώνιον, κορυφὴ δὲ ἡ ΖΗ εὐθεῖα, καὶ ἕτερον πρίσμα, οὗ βάσις μὲν τὸ ΝΥ παραλληλόγραμμον ὀρθογώνιον, κορυφὴ δὲ ἡ ΗΘ εὐθεῖα, καὶ πυραμίδα, ἧς ἡ βάσις μὲν τὸ ΡΓ παραλληλόγραμμον ὀρθογώνιον, κορυφὴ δὲ τὸ Η σημεῖον. ἀλλὰ τὸ μὲν πρίσμα, οὗ βάσις τὸ ΚΛ παραλληλόγραμμον ὀρθογώνιον, ἴσον ἐστὶ στερεῷ παραλληλεπιπέδῳ, οὗ βάσις τὸ ΚΠ παραλληλόγραμμον ὀρθογώνιον καὶ ὕψος τὸ αὐτὸ τῷ στερεῷ, τὸ δὲ πρίσμα, οὗ βάσις τὸ ΝΥ παραλληλόγραμμον ὀρθογώνιον, ἴσον ἐστὶ στερεῷ παραλληλεπιπέδῳ, οὗ βάσις μὲν τὸ παραλληλόγραμμον ‹ὀρθογώνιον›, ὕψος δὲ τὸ αὐτὸ, ἡ δὲ πυραμὶς, ἧς βάσις τὸ ΡΓ παραλληλόγραμμον, ἴση ἐστὶ στερεῷ παραλληλεπιπέδῳ, οὗ βάσις μὲν ἓν καὶ τὸ τρίτον τοῦ ΡΞ παραλληλογράμμου, ὕψος δὲ τὸ αὐτό· ὥστε τὸ ἐξ ἀρχῆς στερεὸν ἴσον εἶναι στερεῷ παραλληλεπιπέδῳ, οὗ βάσις τὸ ΑΞ παραλληλόγραμμον καὶ τὸ τρίτον τοῦ ΡΞ παραλληλογράμμου, ὕψος δὲ τὸ αὐτὸ τῷ ἐξ ἀρχῆς στερεῷ· καὶ ἔστι δοθὲν τὸ ΑΞ παραλληλόγραμμον καὶ τὸ τρίτον τοῦ ΡΞ· ἐπεὶ γὰρ ἑκατέρα τῶν ΒΑ ΑΚ δοθεῖσά ἐστιν καὶ ἔστιν αὐτῶν ἡμίσεια ἡ ΑΦ, δοθεῖσα ἄρα ἡ ΑΦ. κατὰ τὰ αὐτὰ δὴ καὶ ἡ ΒΧ, τουτέστιν ἡ ΦΞ· δοθὲν ἄρα τὸ ΑΞ παραλληλόγραμμον. πάλιν ἐπεὶ δοθεῖσα ἡ ΒΚ, δοθεῖσα ἄρα καὶ ἡ ΚΦ, τουτέστιν ἡ ΡΠ. κατὰ τὰ αὐτὰ καὶ ἡ ΠΞ. δοθὲν ἄρα καὶ τὸ ΞΡ παραλληλόγραμμον. ὥστε καὶ τὸ τρίτον αὐτοῦ δοθέν ἐστιν. ἔστι δὲ καὶ τὸ ὕψος τοῦ στερεοῦ δοθέν· δοθὲν ἄρα καὶ τὸ ἐξ ἀρχῆς στερεόν. συντεθήσεται δὴ οὕτως ἀκολούθως τῇ ἀναλύσει. ἔστω γὰρ ἡ μὲν ΑΒ μονάδων κ, ἡ δὲ ΒΓ μονάδων ιβ, ἡ δὲ ΕΖ μονάδων ιϚ, ἡ δὲ ΖΗ μονάδων γ, ἡ δὲ κάθετος τοῦ στερεοῦ, τουτέστι τὸ ὕψος, μονάδων ι. σύνθες κ καὶ ιϚ· ὧν ἥμισυ γίγνεται ιη. καὶ ιβ καὶ γ· ὧν ἥμισυ γίγνεται ζϚ. ταῦτα ἐπὶ τὰ ιη· γίγνεται ρλε. καὶ ἀπὸ τῶν κ ἄφελε τὰς ιϚ· λοιπὰ δ. ὧν ἥμισυ γίγνεται β. καὶ ἀπὸ τῶν ιβ τὰς γ· καὶ τῶν λοιπῶν τὸ ἥμισυ γίγνεται δϚ. ταῦτα ἐπὶ τὰ β· γίγνεται θ. τούτων τὸ γ΄· γίγνεται γ. πρόσθες ταῖς ρλε· γίγνεται ρλη· ταῦτα ἐπὶ τὸ ὕψος, τουτέστιν ἐπὶ τὰ ι, γίγνεται Ϛατπ. τοσούτου ἔσται τὸ προκείμενον στερεόν.
[9] Ἔστω δὴ κῶνον κόλουρον μετρῆσαι, οὗ ἡ μὲν διάμετρος ἡ ΑΒ ἔστω μονάδων κ, τῆς δὲ κορυφῆς ἡ διάμετρος ἡ ΓΔ μονάδων ιβ, τὸ δὲ ὕψος τὸ ΕΖ μονάδων ι. νενοήσθω ἡ τοῦ κώνου κορυφὴ ἡ Η καὶ περὶ τὴν βάσιν τοῦ κώνου τετράγωνον περιγεγράφθω τὸ ΘΚΛΜ. καὶ ἐπεζεύχθωσαν αἱ ΗΘ ΗΚ ΗΛ ΗΜ. ἔσται ἄρα πυραμὶς, ἧς ἡ βάσις μὲν τὸ ΘΚΛΜ τετράγωνον, κορυφὴ δὲ τὸ Η. ἐὰν οὖν αὕτη τμηθῇ ‹ἐπιπέδῳ› παραλλήλῳ τῇ ἐφέδρᾳ, ποιήσει τομὴν τὸ ΝΞΟΠ τετράγωνον. ὃν δὴ λόγον ἔχει τὸ ΘΛ τετράγωνον πρὸς τὸν περὶ [τὴν] διάμετρον τὴν ΑΒ κύκλον, τοῦτον τὸν λόγον ἔχει ἡ πυραμὶς, ἧς βάσις μὲν τὸ ΘΚΛΜ παραλληλόγραμμον, κορυφὴ δὲ τὸ Η σημεῖον, πρὸς τὸν κῶνον, οὗ βάσις μὲν ὁ περὶ διάμετρον τὴν ΑΒ κύκλος, κορυφὴ δὲ τὸ Η σημεῖον, ἐπειδήπερ καὶ τὸ στερεὸν παραλληλεπίπεδον, οὗ βάσις τὸ ΘΛ παραλληλόγραμμον, ὕψος δὲ τὸ [πρὸς τὸ] ‹Ζ›Η, πρὸς τὸν κύλινδρον, οὗ βάσις ὁ περὶ διάμετρον τὴν ΑΒ κύκλος, ὕψος δὲ τὸ αὐτό, τὸν αὐτὸν λόγον ἔχει. διὰ τὰ αὐτὰ δὴ καὶ ἡ πυραμὶς, ἧς βάσις μέν ἐστι τὸ ΝΞΟΠ τετράγωνον, κορυφὴ δὲ τὸ Η σημεῖον, τὸν αὐτὸν λόγον ἔχει πρὸς τὸν κῶνον, οὗ βάσις μὲν ὁ περὶ διάμετρον τὴν ΓΔ κύκλος, κορυφὴ δὲ τὸ Η σημεῖον. καὶ λοιπὸν ἄρα τὸ στερεὸν, οὗ βάσις μέν ἐστι τὸ ΘΛ, κορυφὴ δὲ τὸ ΝΟ, πρὸς τὸν κόλουρον κῶνον τὸν αὐτὸν ἔχει λόγον. δοθὲν δὲ τὸ ΘΛΝΟ στερεὸν, ὡς δέδεικται· δοθεὶς ἄρα καὶ ὁ κόλουρος κῶνος. συντεθήσεται δὴ ἀκολούθως τῇ ἀναλύσει οὕτως. σύνθες κ καὶ ιβ· ὧν τὸ ἥμισυ γίγνεται ιϚ. ἐφ' ἑαυτὰ σνϚ, ἐπεί ἐστι τετράγωνος. καὶ ἀπὸ τῶν κ τὰ ιβ· ‹λοιπὰ η.› ὧν ἥμισυ γίγνεται δ. ἐφ' ἑαυτὰ ιϚ· τούτων τὸ γ΄· γίγνεται εγ΄. πρόσθες σνϚ· γίγνεται σξα γ΄· τούτων τὸ ιαιδ΄· γίγνεται σε γ΄. ταῦτα ἐπὶ τὸ ὕψος, τουτέστιν ἐπὶ τὰ ι· γίγνεται Ϛβνγ γ΄. τοσούτου ἔσται τὸ στερεὸν τοῦ κολούρου κώνου.
[10] Ἔστι δὲ καὶ ἄλλως τὸν κόλουρον κῶνον μετρῆσαι προδηλοτέρᾳ μὲν ἀποδείξει χρησάμενον, τῇ δὲ περὶ τοὺς ἀριθμοὺς λήψει οὐκ εὐχερεστέρᾳ τῆς προγεγραμμένης. ἔστιν κῶνος κόλουρος, οὗ κέντρα τῶν βάσεων τὰ Α, Β, ἄξων δὲ ὁ ΑΒ. καὶ δοθεὶς ἔστω ὅ τε ἄξων καὶ αἱ διάμετροι τῶν βάσεων. λέγω ὅτι καὶ τὸ στερεὸν τοῦ κολούρου κώνου δοθέν ἐστιν. νενοήσθω γὰρ ἡ τοῦ κώνου κορυφὴ τὸ Γ· ἐπ' εὐθείας ἄρα ἐστὶ τοῖς Α, Β· καὶ ἐκβεβλήσθω διὰ τῆς ΑΒ ἐπίπεδον καὶ ποιείτω τομὴν ἐν μὲν τῇ ἐπιφανείᾳ τοῦ κολούρου κώνου τὸ ΓΔΕ τρίγωνον, ἐν δὲ ταῖς βάσεσιν τὰς ΔΕ ΖΗ διαμέτρους. λόγος ἄρα τῆς ΔΕ πρὸς ΖΗ δοθείς. ὥστε καὶ τῆς ΔΓ πρὸς ΓΖ, τουτέστι τῆς ΒΓ πρὸς ΓΑ· καὶ διελόντι τῆς ΒΑ πρὸς ΑΓ. καὶ ἔστι δοθεῖσα ἡ ΑΒ· δοθεῖσα ἄρα καὶ ἡ ΑΓ· ὥστε καὶ ὅλη ἡ ΒΓ δοθεῖσά ἐστιν, τουτέστιν ὁ ἄξων τοῦ ὅλου κώνου. δοθεῖσα δὲ καὶ ἡ ΔΕ διάμετρος τῆς βάσεως. δέδοται ἄρα καὶ ὁ κῶνος, οὗ βάσις μὲν ὁ περὶ τὸ Β κέντρον κύκλος, κορυφὴ δὲ τὸ Γ σημεῖον. διὰ ταὐτὰ δὴ καὶ ὁ κῶνος, οὗ βάσις μὲν ὁ περὶ τὸ Α κέντρον κύκλος· κορυφὴ δὲ τὸ Γ σημεῖον, δοθείς ἐστι· καὶ λοιπὸς ἄρα ὁ κόλουρος κῶνος δοθείς ἐστι. δεήσει ἄρα ποιῆσαι ὡς τὴν ΔΕ διάμετρον πρὸς τὴν ΖΗ, προστεθείσης τῇ ΑΒ τῆς ΑΓ τὴν ΒΓ πρὸς ΓΑ· καὶ διελόντι ὡς ἡ τῶν ΔΕ ΖΗ ὑπεροχὴ πρὸς τὴν ΖΗ, ἡ ΒΑ πρὸς τὴν ΑΓ. δοθεῖσα δὲ ἡ ΒΑ· δοθεῖσα ἄρα καὶ ἡ ΑΓ. καὶ μετρῆσαι τὸν κῶνον, οὗ βάσις μὲν ὁ περὶ τὸ Β κέντρον κύκλος, κορυφὴ δὲ τὸ Γ σημεῖον, καὶ ἀπὸ τούτου ἀφελεῖν τὸν κῶνον, οὗ βάσις μὲν ὁ περὶ τὸ Α κέντρον κύκλος, κορυφὴ δὲ τὸ Γ σημεῖον. καὶ λοιπὸν ἀποφαίνεσθαι τὸ στερεὸν τοῦ κολούρου κώνου.
[11] Σφαίρας δοθείσης τῆς διαμέτρου μονάδων ι εὑρεῖν τὸ στερεόν. Ἀρχιμήδης ἐν τῷ περὶ σφαίρας καὶ κυλίνδρου δείκνυσιν, ὅτι ὁ κύλινδρος ὁ βάσιν μὲν ἔχων ἴσην τῷ μεγίστῳ κύκλῳ τῶν ἐν τῇ σφαίρᾳ, ὕψος δὲ ἴσον τῇ διαμέτρῳ τῆς σφαίρας ἡμιόλιός ἐστι τῆς σφαίρας. ὥστε κατὰ τοῦτον τὸν λόγον δεήσει τὰ ι ἐφ' ἑαυτὰ ποιήσαντα λαβεῖν τῶν γενομένων τὸ ιαιδ΄ καὶ ταῦτα ἐπὶ τὸ ὕψος τοῦ κυλίνδρου πολλαπλασιάσαντα, τουτέστιν ἐπὶ τὸν ι, τῶν γενομένων λαβεῖν τὸ δίμοιρον, καὶ ἀποφήνασθαι τὸ τῆς σφαίρας στερεόν· εἰσὶ δὲ μονάδες φκγ ιζκα΄. κατὰ δὲ τὸν αὐτὸν λόγον δείκνυται, ὅτι ια κύβοι οἱ ἀπὸ τῆς διαμέτρου τῆς σφαίρας ἴσοι γίγνονται κα σφαίρα‹ις›. ὥστε δεήσει κυβίσαντα τὰ ι· ἔστι δὲ Ϛα· τούτων λαβεῖν τὰ ιακα΄. εἰσὶ δὲ μονάδες φκγ ιζκα΄. καὶ τοσούτου ἀποφαίνεσθαι τὸ στερεὸν τῆς σφαίρας.
[12] Ἔστω δὴ τμῆμα σφαίρας μετρῆσαι, οὗ ἡ μὲν διάμετρος τῆς βάσεως ἔστω μονάδων ιβ, ἡ δὲ κάθετος μονάδων β. πάλιν οὖν ὁ αὐτὸς Ἀρχιμήδης δείκνυσιν ὅτι πᾶν τμῆμα σφαίρας πρὸς τὸν κῶνον τὸν τὴν αὐτὴν βάσιν ἔχοντα αὐτῷ καὶ ὕψος ἴσον λόγον ἔχει, ὃν ἡ τοῦ λοιποῦ τμήματος κάθετος μετὰ τῆς ἐκ τοῦ κέντρου τῆς σφαίρας πρὸς τὴν αὐτὴν κάθετον. ἔστω οὖν τμῆμα τὸ εἰρημένον τῆς σφαίρας τὸ κατὰ τὸ ΑΒΓ τοῦ κύκλου, οὗ κάθετος ἡ ΒΔ. καὶ ἔστω τὸ κέντρον τῆς σφαίρας τὸ Ζ. ὡς ἄρα τὸ τμῆμα τῆς σφαίρας πρὸς τὸν εἰρημένον κῶνον, οὕτω συναμφότερος ἡ ΔΕ ΕΖ πρὸς τὴν ΔΕ καὶ ἐπεὶ δοθεῖσά ἐστιν ἡ ΑΓ, δοθεῖσα ἄρα καὶ ἡ ΑΔ· δοθὲν ἄρα καὶ τὸ ἀπὸ ΑΔ, τουτέστι τὸ ὑπὸ ΒΔ ΔΕ. καὶ ἔστι δοθεῖσα ἡ ΒΔ· δοθεῖσα ἄρα καὶ ἡ ΔΕ· καὶ ὅλη ἄρα ἡ ΒΕ δοθεῖσά ἐστιν. ὥστε καὶ ἡ ΕΖ. καὶ συναμφότερος ἄρα ἡ ΔΕ ΕΖ δοθεῖσά ἐστιν. ἀλλὰ καὶ ἡ ΔΕ δοθεῖσ‹ά ἐστιν›. λόγος ἄρα καὶ τοῦ κώνου, οὗ βάσις μέν ἐστιν ὁ περὶ διάμετρον τὴν ΑΓ κύκλος, ὕψος δὲ ἡ ΒΔ, πρὸς τὸ τμῆμα τῆς σφαίρας ἐστὶν δοθείς· καὶ ἔστι δοθεὶς ὁ κῶνος· δοθὲν ἄρα καὶ τὸ τμῆμα τῆς σφαίρας. δεήσει δὲ κατὰ τὴν αὐτὴν ἀνάλυσιν λαβεῖν τῶν ιβ τὸ ἥμισυ καὶ ἐφ' ἑαυτὸ ποιῆσαι· ἔστι δὲ λϚ· καὶ ταῦτα παραβαλεῖν παρὰ τὸν β· γίγνεται ιη. καὶ προσθεῖναι τὰ β· γίγνεται κ. καὶ τούτων τὸ ἥμισυ γίγνεται ι· ταῦτα μετὰ τῶν ιη γίγνεται κη· καὶ τὴν κάθετον δὶς ποιῆσαι, τουτέστι τὰ β· γίγνεται δ. ἐφ' ἑαυτὰ γίγνεται ιϚ· ταῦτα ἐπὶ τὰ κη· γίγνεται υμη· τούτων τὸ ‹ιαιδ΄›· ‹γίγνεται› τνη· ‹τούτων› τὸ γ΄· γίγνεται ριζ γ΄. τοσούτου ἔσται τὸ στερεὸν τοῦ τμήματος. καὶ λουτῆρα δὲ ἀκολούθως μετρήσομεν τῇ τοῦ τμήματος μετρήσει· ἔστι γὰρ δύο τμημάτων ὑπεροχή. ἀπὸ τοῦ μείζονος οὖν ἀφελόντες τὸ ἔλασσον ἀποφα[ι]νούμεθα τὸ τοῦ λουτῆρος στερεόν. καὶ κόγχην δὲ ὁμοίως μετρήσομεν ὡς ἡμισφαιρίου ἢ τμήματος ἥμισυ ὑπάρχουσαν. αἱ γὰρ ἐν αὐτῇ ξύσται ἐν ἀδιαφόρῳ παραλαμβάνονται εἰς τὰς μετρήσεις.
[13] Τῶν κωνικῶν καὶ κυλινδρικῶν καὶ σφαιρικῶν σχημάτων μεμετρημένων, ἐὰν δέῃ καὶ καμάρας ἐχούσας τὰ προειρημένα σχήματα μετρεῖν ἢ θόλους, ἀκολούθως τῇ ἐπὶ τοῦ λουτῆρος μετρήσει ποιήσομεν· τῆς γὰρ ἐντὸς ἐπιφανείας κοίλης οὔσης, τουτέστι κενῆς, πάλιν ἔσται ἑκάστη αὐτῶν δύο ὁμοίων τμημάτων ὑπεροχή. ἔστω δὲ σπεῖραν μετρῆσαι πρότερον ἐκθέμενον τὴν γένεσιν αὐτῆς. ἔστω γάρ τις ἐν ἐπιπέδῳ εὐθεῖα ἡ ΑΒ καὶ δύο τυχόντα ἐπ' αὐτῆς σημεῖα. εἰλήφθω ὁ ΒΓΔΕ ‹κύκλος› ὀρθὸς ὢν πρὸς τὸ ὑποκείμενον ἐπίπεδον, ἐν ᾧ ἐστιν ἡ ΑΒ εὐθεῖα, καὶ μένοντος τοῦ Α σημείου περιφερέσθω κατὰ τὸ ἐπίπεδον ἡ ΑΒ, ἄχρι οὗ εἰς τὸ αὐτὸ ἀποκατασταθῇ συμπεριφερομένου καὶ τοῦ ΒΓ ΔΕ κύκλου ὀρθοῦ διαμένοντος πρὸς τὸ ὑποκείμενον ἐπίπεδον. ἀπογεννήσει ἄρα τινὰ ἐπιφάνειαν ἡ ΒΓΔΕ περιφέρεια, ἣν δὴ σπειρικὴν καλοῦσιν· κἂν μὴ ᾖ δὲ ὅλος ὁ κύκλος, ἀλλὰ τμῆμα αὐτοῦ, πάλιν ἀπογεννήσει τὸ τοῦ κύκλου τμῆμα σπειρικῆς ἐπιφανείας τμῆμα, καθάπερ εἰσὶ καὶ αἱ ταῖς κίοσιν ὑποκείμεναι σπεῖραι· τριῶν γὰρ οὐσῶν ἐπιφανειῶν ἐν τῷ καλουμένῳ ἀναγραφεῖ, ὃν δή τινες καὶ ἐμβολέα καλοῦσιν, δύο μὲν κοίλων τῶν ἄκρων, μιᾶς δὲ μέσης καὶ κυρτῆς, ἅμα περιφερόμεναι αἱ τρεῖς ἀπογεννῶσι τὸ εἶδος τῆς τοῖς κίοσιν ὑποκειμένης σπείρας. δέον οὖν ἔστω τὴν ἀπογεννηθεῖσαν σπεῖραν ὑπὸ τοῦ ΒΓΔΕ κύκλου μετρῆσαι. δεδόσθω ἡ μὲν ΑΒ μονάδων κ, ἡ δὲ ΒΓ διάμετρος μονάδων ιβ. εἰλήφθω τὸ κέντρον τοῦ κύκλου τὸ Ζ, καὶ ἀπὸ τῶν Α, Ζ τῷ ὑποκειμένῳ ἐπιπέδῳ πρὸς ὀρθὰς ἤχθωσαν αἱ ΔΖΕ ΑΗΘ. καὶ διὰ τῶν Δ, Ε τῇ ΑΒ παράλληλοι ἤχθωσαν αἱ ΔΗ ΕΘ. δέδεικται δὲ Διονυσοδώρῳ ἐν τῷ περὶ τῆς σπείρας ἐπιγραφομένῳ, ὅτι ὃν λόγον ἔχει ὁ ΒΓΔΕ κύκλος πρὸς τὸ ἥμισυ τοῦ ΔΕΗΘ παραλληλογράμμου, τοῦτον ἔχει καὶ ἡ γεννηθεῖσα σπεῖρα ὑπὸ τοῦ ΒΓΔΕ κύκλου πρὸς τὸν κύλινδρον, οὗ ἄξων μέν ἐστιν ὁ ΗΘ, ἡ δὲ ἐκ τοῦ κέντρου τῆς βάσεως ἡ ΕΘ. ἐπεὶ οὖν ἡ ΒΓ μονάδων ιβ ἐστίν, ἡ ἄρα ΖΓ ἔσται μονάδων Ϛ. ἔστι δὲ καὶ ἡ ΑΓ μονάδων η· ἔσται ἄρα ἡ ΑΖ μονάδων ιδ, τουτέστιν ἡ ΕΘ, ἥτις ἐστὶν ἐκ τοῦ κέντρου τῆς βάσεως τοῦ εἰρημένου κυλίνδρου· δοθεὶς ἄρα ἐστὶν ὁ κύκλος· ἀλλὰ καὶ ὁ ἄξων δοθείς· ἔστιν γὰρ μονάδων ιβ, ἐπεὶ καὶ ἡ ΔΕ. ὥστε δοθεὶς καὶ ὁ εἰρημένος κύλινδρος· καὶ ἔστι τὸ ΔΘ παραλληλόγραμμον ‹δοθέν›· ὥστε καὶ τὸ ἥμισυ αὐτοῦ. ἀλλὰ καὶ ὁ ΒΓΔΕ κύκλος· δοθεῖσα γὰρ ἡ ΓΒ διάμετρος. λόγος ἄρα τοῦ ΒΓΔΕ κύκλου πρὸς τὸ ΔΘ παραλληλόγραμμον δοθείς· ὥστε καὶ τῆς σπείρας πρὸς τὸν κύλινδρον λόγος ἔστι δοθείς. καὶ ἔστι δοθεὶς ὁ κύλινδρος· δοθὲν ἄρα καὶ τὸ στερεὸν τῆς σπείρας. συντεθήσεται δὴ ἀκολούθως τῇ ἀναλύσει οὕτως. ἄφελε ἀπὸ τῶν κ τὰ ‹ι›β· λοιπὰ η. καὶ πρόσθες τὰ κ· γίγνεται κη· καὶ μέτρησον κύλινδρον, οὗ ἡ μὲν διάμετρος τῆς βάσεώς ἐστι μονάδων κη, τὸ δὲ ὕψος ιβ· καὶ γίγνεται τὸ στερεὸν αὐτοῦ Ϛζτβ. καὶ μέτρησον κύκλον, οὗ διάμετρός ἐστι μονάδων ιβ· γίγνεται τὸ ἐμβαδὸν αὐτοῦ, καθὼς ἐμάθομεν, ριγ ζ΄· καὶ λαβὲ τῶν κη τὸ ἥμισυ· γίγνεται ιδ. ἐπὶ τὸ ἥμισυ τῶν ιβ· γίγνεται πδ· καὶ πολλαπλασιάσας τὰ [μο] Ϛζτβ ἐπὶ τὰ ριγ ζ΄· καὶ τὰ γενόμενα παράβαλε παρὰ τὸν πδ· γίγνεται ϚθϠνϚ δζ΄. τοσούτου ἔσται τὸ στερεὸν τῆς σπείρας. δυνατὸν δέ ἐστι καὶ ἄλλως μετρῆσαι. ἐπεὶ γὰρ ἡ ΑΖ ἐστὶ μονάδων ιδ, καὶ ἔστιν ἐκ τοῦ κέντρου, ἡ ἄρα διάμετρός ἐστι μονάδων κη· ὥστε ἡ περιφέρεια τοῦ κύκλου γίγνεται μονάδων πη· ἁπλωθεῖσα ἄρα ἡ σπεῖρα καὶ γενομένη ὡς κύλινδρος ἕξει τὸ μῆκος μονάδων πη· καὶ ἔστιν ἡ διάμετρος τῆς βάσεως τοῦ κυλίνδρου, τουτέστιν ἡ ΒΓ, μονάδων ιβ· ὥστε τὸ στερεὸν τοῦ κυλίνδρου, ὡς ἐμάθομεν, ἔσται μονάδων Ϛζτβ. πάλιν ϚθϠνϚ δζ΄.
[14] Ἔστω κυλίνδρου τμῆμα μετρῆσαι τετμημένου διὰ τοῦ κέντρου μιᾶς τῶν βάσεων· καὶ ἔστω ἡ μὲν διάμετρος τῆς βάσεως ἡ ΑΒ μονάδων ζ, τὸ δὲ ὕψος τοῦ τμήματος μονάδων κ· ἀποδέδειχεν Ἀρχιμήδης ἐν τῷ ἐφοδικῷ, ὅτι τὸ τοιοῦτον τμῆμα ἕκτον μέρος ἐστὶ τοῦ στερεοῦ παραλληλεπιπέδου τοῦ βάσιν μὲν ἔχοντος τὸ περιγραφόμενον περὶ τὴν βάσιν τοῦ κυλίνδρου τετράγωνον, ὕψος δὲ τὸ αὐτὸ τῷ τμήματι. δοθὲν δὲ τὸ στερεὸν παραλληλεπίπεδον· δοθὲν ἄρα καὶ τὸ τμῆμα τοῦ κυλίνδρου· ὅθεν δεήσει τὰ ζ ἐφ' ἑαυτὰ ποιήσαντα πολλαπλασιάσαι ἐπὶ τὸ ὕψος, τουτέστιν ἐπὶ τὰ κ· γίγνεται Ϡπ· καὶ τούτων τὸ ἕκτον γίγνεται ρξγ γ΄. τοσούτου ἔσται τὸ τμῆμα τοῦ κυλίνδρου.
[15] Ὁ δ' αὐτὸς Ἀρχιμήδης ἐν τῷ αὐτῷ βιβλίῳ δείκνυσιν, ὅτι ἐὰν εἰς κύβον δύο κύλινδροι διωσθῶσιν τὰς βάσεις ἔχοντες ἐφαπτομένας τῶν πλευρῶν τοῦ κύβου, τὸ κοινὸν τμῆμα τῶν κυλίνδρων δίμοιρον ἔσται τοῦ κύβου. τοῦτο δὲ εὔχρηστον τυγχάνει πρὸς τὰς οὕτως κατασκευαζομένας καμάρας, αἳ γίγνονται ἐπὶ πλεῖστον ἔν τε ταῖς κρήναις καὶ βαλανείοις, ὅταν αἱ εἴσοδοι ἢ τὰ φῶτα ἐκ τῶν τεσσάρων μερῶν ὑπάρχῃ· καὶ ὅπου ξύλοις οὐκ εὔθετοι στεγάζεσθαι τοὺς τόπους.
Ἀκόλουθον δέ ἐστι καὶ τὰς τῶν πέντε σχημάτων τῶν Πλάτωνος καλουμένων, λέγω δὴ κύβου τε καὶ πυραμίδος καὶ ὀκταέδρου, ἔτι δὲ καὶ δωδεκαέδρου καὶ εἰκοσαέδρου, τὰς μετρήσεις προσεντάξαι. ὁ μὲν οὖν κύβος φανερὰν τὴν μέτρησιν ἔχει· δεῖ γὰρ κυβίσαι τὰς διδομένας τῆς πλευρᾶς αὐτοῦ μονάδας καὶ ἀποφαίνεσθαι αὐτοῦ τὸ στερεόν.
[16] Ἔστω δὲ πυραμίδα μετρῆσαι, ἧς βάσις μέν ἐστι τὸ ΑΒΓ ‹ἰσόπλευρον› τρίγωνον, κορυφὴ δὲ τὸ Δ σημεῖον. ἧς ἑκάστη[ς] πλευρὰ[ς] ἔστω μονάδων ιβ. εἰλήφθω τὸ κέντρον τοῦ περὶ τὸ ΑΒΓ τρίγωνον κύκλου τὸ Ε· καὶ ἐπεζεύχθωσαν αἱ ΔΕ ΕΓ· τὸ ἄρα ἀπὸ τῆς ΒΓ, τουτέστι τὸ ἀπὸ τοῦ ΓΔ, τριπλάσιόν ἐστι τοῦ ἀπὸ τῆς ΓΕ· ἡμιόλιον ἄρα ἐστὶ τὸ ἀπὸ τῆς ΓΔ τοῦ ἀπὸ τῆς ΔΕ· καὶ ἔστι τὸ ἀπὸ ΓΔ μονάδων ρμδ. τὸ ἄρα ἀπὸ ΔΕ ἔσται μονάδων Ϛ· αὐτὴ δὲ ἡ ΔΕ ὡς ἔγγιστα μονάδων θϚγ΄· ἐπεὶ οὖν ἑκάστη τῶν ΑΒ ΒΓ ΓΑ δέδοται, ‹δέδοται› δὲ καὶ ἡ κάθετος ἡ ΔΕ, δοθὲν ἄρα καὶ τὸ στερεὸν τῆς πυραμίδος. ὥστε δεήσει τὸ ἐμβαδὸν τοῦ ΑΒΓ ἰσοπλεύρου τριγώνου ὡς ἐμάθομεν πολλαπλασιάσαι ἐπὶ τὰς θϚγ΄· καὶ τῶν γιγνομένων τὸ τρίτον λαβόντα ἀποφαίνεσθαι τὸ τῆς πυραμίδος στερεόν.
[17] Ἔστω δὲ ὀκτάεδρον μετρῆσαι, οὗ ἑκάστη πλευρά ἐστι μονάδων ζ. ἔστω τὸ εἰρημένον ὀκτάεδρον, οὗ γωνίαι ἔστωσαν αἱ πρὸς τοῖς ΑΒΓ ΔΕΖ σημείοις· τοῦτο δὲ σύγκειται ἐκ δύο πυραμίδων, ὧν βάσις κοινὴ τὸ ΑΒΓΔ τετράγωνον, κορυφαὶ δὲ τὰ Ε, Ζ σημεῖα· ἑκατέρας ἄρα αὐτῶν τριπλάσιόν ἐστι τὸ στερεὸν παραλληλεπίπεδον, οὗ βάσις μέν ἐστι τὸ ΑΒΓΔ, ὕψος δὲ τὸ ἥμισυ τῆς ΕΖ· ὥστε ὅλου τοῦ ὀκταέδρου τριπλάσιόν ἐστι τὸ στερεὸν παραλληλεπίπεδον, οὗ βάσις μὲν τὸ ΑΒΓΔ τετράγωνον, ὕψος δὲ ἡ ΕΖ διάμετρος. ἐπεὶ οὖν ἐστι τὸ ἀπὸ τῆς ΕΑ μονάδων μθ, τὸ ἄρα ἀπὸ τῆς ΕΖ ἔσται η· ἡ ἄρα ΕΖ ὡς ἔγγιστα ἔσται μονάδων ι. ἐπεὶ οὖν ἡ ΑΒ ἐστὶ μονάδων ζ, τὸ ἄρα ΑΒΓΔ τετράγωνον ἔσται μονάδων μθ· καὶ ἔστιν ἡ ΕΖ ὕψος τοῦ στερεοῦ· τὸ ἄρα στερεὸν παραλληλεπίπεδον ἔσται μονάδων υ· καὶ ἔστι τριπλάσιον τοῦ ὀκταέδρου· τὸ ἄρα ὀκτάεδρον ἔσται ρξγ γ΄· τοσούτου ἔσται τὸ στερεόν.
[18] Ἔστω εἰκοσάεδρον ‹μετρῆσαι›, οὗ ἑκάστη τῶν πλευρῶν ἔστω μονάδων ι. ἐπεὶ οὖν τὸ εἰκοσάεδρον ὑπὸ εἴκοσι τριγώνων ἰσοπλεύρων περιέχεται, νενοήσθωσαν ἀπὸ τοῦ κέντρου τῆς σφαίρας ἐπιζευγμέναι ‹εὐθεῖαι› ἐπὶ τὰς τῶν τριγώνων γωνίας· ἔσονται ἄρα εἴκοσι πυραμίδες ἴσαι βάσεις μὲν ἔχουσαι τὰ τοῦ εἰκοσαέδρου τρίγωνα, κορυφὰς δὲ τὸ κέντρον τῆς σφαίρας· καὶ μία αὐτῶν ‹νε›νοήσθω, ἧς βάσις μέν ἐστι τὸ ΑΒΓ τρίγωνον, κορυφὴ δὲ τὸ Δ σημεῖον, καὶ εἰλήφθω τὸ κέντρον τοῦ περὶ τὸ ΑΒΓ τρίγωνον κύκλου τὸ Ε. καὶ ἐπεζεύχθω ἡ ΔΕ· ἐπεὶ οὖν ἡ τοῦ εἰκοσαέδρου πλευρὰ πρὸς τὴν ἀπὸ τοῦ κέντρου τῆς σφαίρας κάθετον ἀγομένην ἐπὶ ἓν τῶν τοῦ εἰκοσαέδρου τριγώνων λόγον ἔχει, ‹ὃν› τὰ ρκζ πρὸς τὰ γ, καὶ ἔστιν ἡ τοῦ εἰκοσαέδρου πλευρὰ μονάδων υ, ἔσται ἄρα ἡ ΔΕ κάθετος μονάδων ζ καὶ μαρκζ΄. ἐπεὶ οὖν τοῦ ΑΒΓ τριγώνου ἑκάστη πλευρὰ δοθεῖσά ἐστιν καὶ ἡ ΔΕ δὲ κάθετος, δοθεῖσα ἄρα καὶ ἡ πυραμὶς, ἧς βάσις μέν ἐστι τὸ ΑΒΓ τρίγωνον, κορυφὴ δὲ τὸ Δ σημεῖον. καὶ ἔστιν εἰκοστὸν μέρος τοῦ εἰκοσαέδρου· δοθὲν ἄρα ἐστὶ καὶ τὸ εἰκοσάεδρον. δεήσει ἄρα τὰ ι ἐπὶ τὰ γ ποιῆσαι καὶ τῶν γενομένων λαβεῖν τὸ ρκζ΄ καὶ ἔχειν τὴν τῆς πυραμίδος κάθετον· καὶ λαβόντα τὸ ἐμβαδὸν τοῦ ΑΒΓ τριγώνου ἰσοπλεύρου καὶ εἰκοσάκι ποιήσαντα πολλαπλασιάσαι ἐπὶ τὴν εἰρημένην κάθετον· καὶ τῶν γενομένων τὸ τρίτον λαβόντα ἀποφαίνεσθαι τὸ τοῦ εἰκοσαέδρου στερεόν.
[19] Ἔστω δὴ δωδεκάεδρον μετρῆσαι, οὗ ἑκάστη πλευρά ἐστι μονάδων ι. πάλιν οὖν, ἐὰν ἀπὸ τοῦ κέντρου τῆς σφαίρας νοήσωμεν ἐπιζευγμένας εὐθείας ἐπὶ τὰς τοῦ πενταγώνου γωνίας, ἔσονται ιβ πυραμίδες πενταγώνους βάσεις ἔχουσαι, κορυφὰς δὲ τὸ κέντρον τῆς σφαίρας· λόγον δὲ ἔχει ἡ τοῦ πενταγώνου πλευρὰ πρὸς τὴν ἀπὸ τοῦ κέντρου τῆς σφαίρας κάθετον ἀγομένην ἐπὶ ἓν τῶν πενταγώνων, ὃν τὰ η πρὸς τὰ θ· καὶ ἔστιν ἡ τοῦ πενταγώνου πλευρὰ μονάδων ι· ἡ ἄρα εἰρημένη κάθετος ἔσται μονάδων ια δ΄. πάλιν οὖν τὸ ἐμβαδὸν τοῦ πενταγώνου λαβόντες καὶ πολλαπλασιάσαντες ἐπὶ τὴν κάθετον καὶ τῶν γενομένων τὸ τρίτον λαβόντες ἕξομεν μιᾶς πυραμίδος τὸ στερεόν· ὃ δωδεκάκι ποιήσαντες ἕξομεν τὸ τοῦ δωδεκαέδρου στερεόν.
[20] Τῶν δὴ ἐν τάξει στερεῶν σωμάτων μετρηθέντων εὔλογον ὑπολαμβάνομεν καὶ τὰ ἄτακτα, οἷον ῥιζώδη ἢ πετρώδη, παριστορῆσαι τῇ μετρήσει, ὡς ἔνιοι ἱστοροῦσι τὸν Ἀρχιμήδη ἐπινενοηκέναι πρὸς τὰ τοιαῦτα μέθοδον. εἰ μὲν γὰρ εὐμετάφορον εἴη τὸ μέλλον μετρεῖσθαι, δεήσει δεξαμενὴ‹ν› πάντη ὀρθογωνίαν ποιήσαντα δυναμένην δέξασθαι, ὃ βουλόμεθα μετρηθῆναι, πληρῶσαι ὕδατος καὶ ἐμβαλεῖν τὸ ἄτακτον σῶμα. δῆλον δὴ οὖν, ὅτι ὑπερχυθήσεται τὸ ὕδωρ καὶ τοσοῦτόν γε, ὅσος ἐστὶν ὁ τοῦ ἐμβληθέντος σώματος εἰς τὸ ὕδωρ ὄγκος, ἐξαρθέντος τοῦ σώματος πάλιν ἐκ τῆς δεξαμενῆς ἐλλιπὲς ἔσται. μετρήσαντες οὖν τὸν ἐκκεκενωμένον τόπον ἀποφανούμεθα τοσούτου εἶναι τὸ στερεὸν τοῦ ἐμβληθέντος σώματος. ἢ καὶ ἄλλως δυνατόν ἐστι τὸ αὐτὸ μετρῆσαι· ἐὰν γὰρ προσπλασθῇ τὸ ἄτακτον σῶμα κηρῷ ἢ πηλῷ, ὥστε γενέσθαι ἀποκρυβὲν πάντη ὀρθογώνιον, καὶ τοῦτο μετρήσαντες ἀφέλωμεν τὸν πηλὸν καὶ ὀρθογώνιον πλάσαντες ἐκμετρήσωμεν καὶ ἀφέλωμεν ἀπὸ τοῦ πρότερον μετρηθέντος τὸ καταλειπόμενον, ἀποφανούμεθα τὸ τοῦ σώματος στερεόν· τῇ δὲ τοῦ περιπλάσματος μεθόδῳ χρῆσθαι δεῖ ἐπὶ τῶν μὴ δυναμένων μετατίθεσθαι σωμάτων.