5890 271 0 0 9 0 III a. C. Geometria Archimedes Quadratura parabolae 0

ARCHIMEDES - Quadratura parabolae

Indice delle opere di Archimede

[164]

Ἀρχιμήδης Δοσιθέῳ εὖ πράττειν.

   Ἀκούσας Κόνωνα μὲν τετελευτηκέναι, ὃς ἦν οὐδὲν ἐπιλείπων ἁμῖν ἐν φιλίᾳ, τὶν δὲ Κόνωνος γνώριμον γεγενῆσθαι καὶ γεωμετρίας οἰκεῖον εἶμεν τοῦ μὲν τετελευτηκότος εἵνεκεν ἐλυπήθημες ὡς καὶ φίλου τοῦ ἀνδρὸς γεναμένου καὶ ἐν τοῖς μαθημάτεσσι θαυμαστοῦ τινος, ἐπροχειριξάμεθα δὲ ἀποστεῖλαί τοι γράψαντες, ὡς Κόνωνι γράφειν ἐγνωκότες ἦμες, γεωμετρικῶν θεωρημάτων, ὃ πρότερον μὲν οὐκ ἦν τεθεωρημένον, νῦν δὲ ὑφ' ἁμῶν τεθεώρηται, πρότερον μὲν διὰ μηχανικῶν εὑρεθέν, ἔπειτα δὲ καὶ διὰ τῶν γεωμετρικῶν ἐπιδειχθέν. Τῶν μὲν οὖν πρότερον περὶ γεωμετρίαν πραγματευθέντων ἐπεχείρησάν τινες γράφειν ὡς δυνατὸν ἐὸν κύκλῳ τῷ δοθέντι καὶ κύκλου τμάματι τῷ δοθέντι χωρίον εὑρεῖν εὐθύγραμμον ἴσον, καὶ μετὰ ταῦτα τὸ περιεχόμενον χωρίον ὑπό τε τᾶς ὅλου τοῦ κώνου τομᾶς καὶ εὐθείας τετραγωνίζειν ἐπειρῶντο λαμβάνοντες οὐκ εὐπαραχώρητα λήμματα, διόπερ αὐτοῖς ὑπὸ τῶν πλείστων οὐχ εὑρισκόμενα ταῦτα κατεγνωσθέν. Τὸ δὲ ὑπ' εὐθείας τε καὶ ὀρθογωνίου κώνου τομᾶς τμᾶμα [165] περιεχόμενον οὐδένα τῶν προτέρων ἐγχειρήσαντα τετραγωνίζειν ἐπιστάμεθα, ὃ δὴ νῦν ὑφ' ἁμῶν εὕρηται· δείκνυται γὰρ ὅτι πᾶν τμᾶμα περιεχόμενον ὑπὸ εὐθείας καὶ ὀρθογωνίου κώνου τομᾶς ἐπίτριτόν ἐστι τοῦ τριγώνου τοῦ βάσιν ἔχοντος τὰν αὐτὰν καὶ ὕψος ἴσον τῷ τμάματι λαμβανομένου τοῦδε τοῦ λήμματος ἐς τὰν ἀπόδειξιν αὐτοῦ· τῶν ἀνίσων χωρίων τὰν ὑπεροχάν, ᾇ ὑπερέχει τὸ μεῖζον τοῦ ἐλάσσονος, δυνατὸν εἶμεν αὐτὰν ἑαυτᾷ συντιθεμέναν παντὸς ὑπερέχειν τοῦ προτεθέντος πεπερασμένου χωρίου. Κέχρηνται δὲ καὶ οἱ πρότερον γεωμέτραι τῷδε τῷ λήμματι· τούς τε γὰρ κύκλους διπλασίονα λόγον ἔχειν ποτ' ἀλλάλους τᾶν διαμέτρων ἀποδεδείχασιν αὐτῷ τούτῳ τῷ λήμματι χρώμενοι, καὶ τὰς σφαίρας ὅτι τριπλασίονα λόγον ἔχοντι ποτ' ἀλλάλας τᾶν διαμέτρων, ἔτι δὲ καὶ ὅτι πᾶσα πυραμὶς τρίτον μέρος ἐστὶ τοῦ πρίσματος τοῦ τὰν αὐτὰν βάσιν ἔχοντος τᾷ πυραμίδι καὶ ὕψος ἴσον· καὶ διότι πᾶς κῶνος τρίτον μέρος ἐστὶ τοῦ κυλίνδρου τοῦ τὰν αὐτὰν βάσιν ἔχοντος τῷ κώνῳ καὶ ὕψος ἴσον, ὁμοῖον τῷ προειρημένῳ λῆμμά τι λαμβάνοντες ἔγραφον. Συμβαίνει δὲ τῶν προειρημένων θεωρημάτων ἕκαστον μηδενὸς ἧσσον τῶν ἄνευ τούτου τοῦ λήμματος ἀποδεδειγμένων πεπιστευκέναι· ἀρκεῖ δὲ ἐς τὰν ὁμοίαν πίστιν τούτοις ἀναγμένων τῶν ὑφ' ἁμῶν ἐκδιδομένων. Ἀναγράψαντες οὖν αὐτοῦ τὰς ἀποδείξιας ἀποστέλλομες πρῶτον μὲν ὡς διὰ τῶν μηχανικῶν ἐθεωρήθη, μετὰ ταῦτα δὲ καὶ ὡς διὰ τῶν γεωμετρουμένων ἀποδείκνυται. Προγράφεται δὲ καὶ στοιχεῖα κωνικὰ χρεῖαν ἔχοντα ἐς τὰν ἀπόδειξιν. Ἔρρωσο.

[166]    α΄.

   Εἴ κα ᾖ ὀρθογωνίου κώνου τομά, ἐφ' ἇς ἁ ΑΒΓ, ἁ δὲ ΒΔ παρὰ τὰν διάμετρον ἢ αὐτὰ διάμετρος, ἁ δὲ ΑΓ παρὰ τὰν κατὰ τὸ Β ἐπιψαύουσαν τᾶς τοῦ κώνου τομᾶς, ἴσα ἐσσεῖται ἁ ΑΔ τᾷ ΔΓ· κἂν ἴσα ᾖ ἁ ΑΔ τᾷ ΔΓ, παράλληλοι ἐσσοῦνται ἅ τε ΑΓ καὶ ἁ κατὰ τὸ Β ἐπιψαύουσα τᾶς τοῦ κώνου τομᾶς.

   β΄.

   Εἴ κα ᾖ ὀρθογωνίου κώνου τομὰ ἁ ΑΒΓ, ᾖ δὲ ἁ μὲν ΒΔ παρὰ τὰν διάμετρον ἢ αὐτὰ διάμετρος, ἁ δὲ ΑΔΓ [167] παρὰ τὰν κατὰ τὸ Β ἐπιψαύουσαν τᾶς τοῦ κώνου τομᾶς, ἁ δὲ ΕΓ τᾶς τοῦ κώνου τομᾶς ἐπιψαύουσα κατὰ τὸ Γ, ἐσσοῦνται αἱ ΒΔ, ΒΕ ἴσαι.

   γ΄.

   Εἴ κα ᾖ ὀρθογωνίου κώνου τομὰ ἁ ΑΒΓ, ἁ δὲ ΒΔ παρὰ τὰν διάμετρον ἢ αὐτὰ διάμετρος, καὶ ἀχθέωντί τινες αἱ ΑΔ, ΕΖ παρὰ τὰν κατὰ τὸ Β ἐπιψαύουσαν τᾶς τοῦ κώνου τομᾶς, ἐσσεῖται, ὡς ἁ ΒΔ ποτὶ τὰν ΒΖ, δυνάμει ἁ ΑΔ ποτὶ τὰν ΕΖ.

   Ἀποδέδεικται δὲ ταῦτα ἐν τοῖς κωνικοῖς στοιχείοις.

   δ΄.

   Ἔστω τμᾶμα περιεχόμενον ὑπὸ εὐθείας καὶ ὀρθογωνίου κώνου τομᾶς τὸ ΑΒΓ, ἁ δὲ ΒΔ ἀπὸ μέσας τᾶς ΑΓ παρὰ τὰν διάμετρον ἄχθω ἢ αὐτὰ διάμετρος ἔστω, καὶ ἁ ΒΓ εὐθεῖα ἐπιζευχθεῖσα ἐκβεβλήσθω. Εἰ δή κα ἀχθῇ τις ἄλλα ἁ ΖΘ παρὰ τὰν ΒΔ τέμνουσα τὰν διὰ τῶν Β, Γ εὐθεῖαν, τὸν αὐτὸν ἕξει λόγον ἁ ΖΘ ποτὶ τὰν ΘΗ, ὃν ἁ ΔΑ ποτὶ τὰν ΔΖ.

   Ἄχθω γὰρ διὰ τοῦ Η παρὰ τὰν ΑΓ ἁ ΚΗ· ἔστιν ἄρα ὡς ἁ ΒΔ ποτὶ τὰν ΒΚ μάκει, οὕτως ἁ ΔΓ ποτὶ τὰν ΚΗ δυνάμει· ἀποδέδεικται γὰρ τοῦτο. Ἐσσεῖται ἄρα ὡς ἁ ΒΓ ποτὶ τὰν ΒΙ μάκει, οὕτως ἁ ΒΓ ποτὶ τὰν ΒΘ δυνάμει· ἴσαι γὰρ αἱ ΔΖ, ΚΗ· ἀνάλογον ἄρα ἐντὶ αἱ ΒΓ, ΒΘ, ΒΙ γραμμαί. Ὥστε τὸν αὐτὸν ἔχει λόγον ἁ ΒΓ ποτὶ τὰν ΒΘ, ὃν ἁ ΓΘ ποτὶ τὰν ΘΙ· ἔστιν ἄρα ὡς ἁ ΓΔ ποτὶ τὰν ΔΖ, οὕτως ἁ ΘΖ ποτὶ τὰν ΘΗ. Τᾷ δὲ ΔΓ ἴσα ἐστὶν ἁ ΔΑ· δῆλον οὖν ὅτι τὸν αὐτὸν ἔχει λόγον ἁ ΔΑ ποτὶ τὰν ΔΖ, ὃν ἁ ΖΘ ποτὶ τὰν ΘΗ.

   ε΄.

   Ἔστω τμᾶμα περιεχόμενον ὑπὸ εὐθείας καὶ ὀρθογωνίου κώνου τομᾶς τὸ ΑΒΓ, καὶ ἄχθω ἀπὸ τοῦ Α παρὰ τὰν διάμετρον ἁ ΖΑ, ἀπὸ δὲ τοῦ Γ ἐπιψαύουσα τᾶς τοῦ κώνου τομᾶς κατὰ τὸ Γ ἁ ΓΖ. Εἰ δή τις ἀχθείη ἐν τῷ ΖΑΓ τριγώνῳ [169] παρὰ τὰν ΑΖ, τὸν αὐτὸν λόγον ἁ ἀχθεῖσα τετμήσεται ὑπὸ τᾶς τοῦ ὀρθογωνίου κώνου τομᾶς καὶ ἁ ΑΓ ὑπὸ τᾶς ἀχθείσας [ἀνάλογον], ὁμόλογον δὲ ἐσσεῖται τὸ τμᾶμα τᾶς ΑΓ τὸ ποτὶ τῷ Α τῷ τμάματι τᾶς ἀχθείσας τῷ ποτὶ τῷ Α.

   Ἄχθω γάρ τις ἁ ΔΕ παρὰ τὰν ΑΖ, καὶ τεμνέτω πρῶτον ἁ ΔΕ τὰν ΑΓ δίχα. Ἐπεὶ οὖν ἐστιν ὀρθογωνίου κώνου τομὰ ἁ ΑΒΓ καὶ ἀγμένα ἁ ΒΔ παρὰ τὰν διάμετρον, αἱ δὲ ΑΔ, ΔΓ ἴσαι, ἐσσεῖται τᾷ ΑΓ παράλληλος ἁ κατὰ τὸ Β ἐπιψαύουσα τᾶς τοῦ ὀρθογωνίου κώνου τομᾶς. Πάλιν, ἐπεὶ παρὰ τὰν διάμετρόν ἐστιν ἁ ΔΕ, καὶ ἀπὸ τοῦ Γ ἁ ΓΕ ἆκται ἐπιψαύουσα τᾶς τοῦ ὀρθογωνίου κώνου τομᾶς κατὰ τὸ Γ, ἁ δὲ ΔΓ παράλληλος τᾷ κατὰ τὸ Β ἐπιψαυούσᾳ, ἴσα ἐστὶν ἁ ΕΒ τᾷ ΒΔ· ὥστε τὸν αὐτὸν ἔχει λόγον ἁ ΑΔ ποτὶ τὰν ΔΓ, ὃν ἁ ΔΒ ποτὶ τὰν ΒΕ. Εἰ μὲν οὖν δίχα τέμνει ἁ ἀχθεῖσα τὰν ΑΓ, δέδεικται· εἰ δὲ μή, ἄχθω τις ἄλλα ἁ ΚΛ παρὰ τὰν ΑΖ· δεικτέον οὖν ὅτι τὸν αὐτὸν ἔχει λόγον ἁ ΑΚ ποτὶ τὰν ΚΓ, ὃν ἁ ΚΘ ποτὶ τὰν ΘΛ. Ἐπεὶ γὰρ [170] ἴσα ἐστὶν ἁ ΒΕ τᾷ ΒΔ, ἴσα ἐστὶ καὶ ἁ ΙΛ τᾷ ΚΙ· τὸν αὐτὸν ἄρα λόγον ἔχει ἁ ΛΚ ποτὶ τὰν ΚΙ, ὃν ἁ ΑΓ ποτὶ τὰν ΔΑ. Ἔχει δὲ καὶ ἁ ΚΙ ποτὶ τὰν ΚΘ τὸν αὐτὸν λόγον, ὃν ἁ ΔΑ ποτὶ τὰν ΑΚ· δέδεικται γὰρ ἐν τῷ πρότερον· ὥστε τὸν αὐτὸν λόγον ἔχει ἁ ΚΘ ποτὶ τὰν ΘΛ, ὃν ἁ ΑΚ ποτὶ τὰν ΚΓ. Δέδεικται οὖν τὸ προτεθέν.

   Ϛ΄.

   Νοείσθω δὲ τὸ [ὅτε ἐστὶν τὸ ἐν τᾷ θεωρίᾳ] προκείμενον [ὁρώμενον] ἐπίπεδον ὀρθὸν ποτὶ τὸν ὁρίζοντα, καὶ τᾶς ΑΒ γραμμᾶς [ἔπειτα] τὰ μὲν ἐπὶ τὰ αὐτὰ τῷ Δ κάτω νοείσθω, τὰ δὲ ἐπὶ θάτερα ἄνω, τὸ δὲ ΒΔΓ τρίγωνον ἔστω ὀρθογώνιον ὀρθὰν ἔχον τὰν ποτὶ τῷ Β γωνίαν καὶ τὰν ΒΓ πλευρὰν ἴσαν τᾷ ἡμισείᾳ τοῦ ζυγοῦ [δηλονότι ἴσης οὔσης τᾶς ΑΒ τῇ ΒΓ], κρεμάσθω δὲ τὸ τρίγωνον ἐκ τῶν Β, Γ σαμείων, κρεμάσθω δὲ καὶ ἄλλο χωρίον τὸ Ζ ἐκ τοῦ ἑτέρου μέρεος τοῦ ζυγοῦ κατὰ τὸ Α, καὶ ἰσορροπείτω τὸ Ζ χωρίον κατὰ τὸ Α κρεμάμενον τῷ ΒΔΓ τριγώνῳ οὕτως ἔχοντι, ὡς νῦν κεῖται. Φαμὶ δὴ τὸ Ζ χωρίον τοῦ ΒΔΓ τριγώνου μέρος τρίτον εἶμεν.

[171]    Ἐπεὶ γὰρ ὑπόκειται ἰσορροπέων ὁ ζυγός, εἴη κα ἁ ΑΓ γραμμὰ παρὰ τὸν ὁρίζοντα, αἱ δὲ ποτ' ὀρθὰς ἀγόμεναι τᾷ ΑΓ ἐν τῷ ὀρθῷ ἐπιπέδῳ ποτὶ τὸν ὁρίζοντα κάθετοι ἐσσοῦνται ἐπὶ τὸν ὁρίζοντα. Τετμάσθω ἁ ΒΓ γραμμὰ κατὰ τὸ Ε οὕτως, ὥστε διπλασίονα εἶμεν τὰν ΓΕ τᾶς ΕΒ, καὶ ἄχθω παρὰ τὰν ΔΒ ἁ ΚΕ καὶ τετμάσθω δίχα κατὰ τὸ Θ· τοῦ δὴ ΒΔΓ τριγώνου κέντρον βάρεός ἐστι τὸ Θ σαμεῖον· δέδεικται γὰρ τοῦτο ἐν τοῖς Μηχανικοῖς· Εἴ κα οὖν τοῦ ΒΔΓ τριγώνου ἁ μὲν κατὰ τὰ Β, Γ κρέμασις λυθῇ, κατὰ δὲ τὸ Ε κρεμασθῇ, μενεῖ τὸ τρίγωνον ὡς νῦν ἔχει· ἕκαστον γὰρ τῶν κρεμαμένων, ἐξ οὗ σαμείου κα κατασταθῇ, μένει, ὥστε κατὰ κάθετον εἶμεν τό τε σαμεῖον τοῦ κρεμαστοῦ καὶ τὸ κέντρον τοῦ βάρεος τοῦ κρεμαμένου· δέδεικται γὰρ καὶ τοῦτο. Ἐπεὶ οὖν τὰν αὐτὰν ἕξει κατάστασιν τὸ ΒΔΓ τρίγωνον ποτὶ τὸν ζυγόν, ἰσορροπήσει ὁμοίως τὸ Ζ χωρίον. Ἐπεὶ δὲ ἰσορροπέοντι τὸ μὲν Ζ κρεμάμενον κατὰ τὸ Α, τὸ δὲ ΒΔΓ κατὰ τὸ Ε, δῆλον ὡς ἀντιπέπονθε τοῖς μάκεσιν, καί ἐστιν ὡς ἁ ΑΒ ποτὶ τὰν ΒΕ, οὕτως τὸ ΒΔΓ τρίγωνον ποτὶ τὸ Ζ χωρίον. Τριπλασία δὲ ἁ ΑΒ τᾶς ΒΕ· καὶ τὸ ΒΔΓ ἄρα τρίγωνον τριπλάσιόν ἐστι τοῦ Ζ χωρίου.

   Φανερὸν δὲ [ὅτι] καί, εἴ κα τριπλάσιον ᾖ τὸ ΒΔΓ τρίγωνον τοῦ Ζ χωρίου, ὅτι ἰσορροπήσει.

   ζ΄.

   Ἔστω πάλιν ζυγὸς ἁ ΑΓ γραμμά, μέσον δὲ αὐτᾶς ἔστω τὸ Β, καὶ κρεμάσθω κατὰ τὸ Β [τὸ ΓΔΗ τρίγωνον], [172] τὸ δὲ ΓΔΗ ἔστω τρίγωνον ἀμβλυγώνιον βάσιν μὲν ἔχον τὰν ΔΗ, ὕψος δὲ τὰν ἴσαν ἐοῦσαν τᾷ ἡμισείᾳ τοῦ ζυγοῦ, καὶ κρεμάσθω τὸ ΔΓΗ τρίγωνον ἐκ τῶν Β, Γ σαμείων, τὸ δὲ Ζ χωρίον κρεμάμενον κατὰ τὸ Α ἰσσορροπὲς ἔστω τῷ ΓΔΗ τριγώνῳ οὕτως ἔχοντι ὡς νῦν κεῖται. Ὁμοίως δὴ δειχθήσεται τὸ Ζ χωρίον τρίτον μέρος τοῦ ΓΔΗ τριγώνου.

   Κρεμάσθω γάρ τι καὶ ἄλλο χωρίον ἐκ τοῦ Α τρίτον μέρος ἐὸν τοῦ ΒΓΗ τριγώνου· ἰσορροπήσει δὴ τὸ ΒΔΓ τρίγωνον τῷ ΖΛ. Ἐπεὶ οὖν τὸ μὲν ΒΓΗ τρίγωνον ἰσορροπεῖ τῷ Λ, τὸ δὲ ΒΓΔ τῷ ΖΛ, καὶ τρίτον ἐστὶ τοῦ ΒΓΔ τὸ ΖΛ, φανερὸν ὅτι καὶ τὸ ΓΔΗ τρίγωνον τριπλάσιον τοῦ Ζ.

   η΄.

   Ἔστω ζυγὸς ὁ ΑΒΓ, μέσον δὲ αὐτοῦ τὸ Β, καὶ κρεμάσθω κατὰ τὸ Β, τὸ δὲ ΓΔΕ τρίγωνον ὀρθογώνιον ὀρθὰν ἔχον τὰν ποτὶ τῷ Ε γωνίαν, καὶ κρεμάσθω ἐκ τοῦ ζυγοῦ κατὰ τὰ Γ, Ε, τὸ δὲ Ζ χωρίον κρεμάσθω κατὰ τὸ Α καὶ ἰσορροπείτω τῷ ΓΔΕ οὕτως ἔχοντι, ὡς νῦν κεῖται, ὃν δὲ λόγον ἔχει ἁ ΑΒ ποτὶ τὰν ΒΕ, τοῦτον ἐχέτω τὸ ΓΔΕ τρίγωνον [173] ποτὶ τὸ Κ χωρίον. Φαμὶ δὴ τὸ Ζ χωρίον τοῦ μὲν ΓΔΕ τριγώνου ἔλασσον εἶμεν, τοῦ δὲ Κ μεῖζον.

   Λελάφθω γὰρ τοῦ ΔΕΓ τριγώνου τὸ κέντρον τοῦ βάρεος καὶ ἔστω τὸ Θ, καὶ ἁ ΘΗ ἄχθω παρὰ τὰν ΔΕ. Ἐπεὶ οὖν ἰσορροπεῖ τὸ ΓΔΕ τρίγωνον τῷ Ζ χωρίῳ, τὸν αὐτὸν ἔχει λόγον τὸ ΓΔΕ χωρίον ποτὶ τὸ Ζ, ὃν ἁ ΑΒ ποτὶ τὰν ΒΗ· ὥστε ἔλασσόν ἐστι τὸ Ζ τοῦ ΓΔΕ. Καὶ ἐπεὶ τὸ ΓΔΕ τρίγωνον ποτὶ μὲν τὸ Ζ τοῦτον ἔχει τὸν λόγον, ὃν ἁ ΒΑ ποτὶ τὰν ΒΗ, ποτὶ δὲ τὸ Κ ὃν ἁ ΒΑ ποτὶ τὰν ΒΕ, δῆλον ὡς μείζονα λόγον ἔχει τὸ ΓΔΕ τρίγωνον ποτὶ τὸ Κ ἢ ποτὶ τὸ Ζ· ὥστε μεῖζόν ἐστι τὸ Ζ τοῦ Κ.

   θ΄.

   Ἔστω πάλιν τὸ μὲν ΑΓ ζύγιον, μέσον δὲ αὐτοῦ τὸ Β, τὸ δὲ ΓΔΚ τρίγωνον ἀμβλυγώνιον βάσιν μὲν ἔχον τὰν ΔΚ, ὕψος δὲ τὰν ΕΓ, καὶ κρεμάσθω ἐκ τοῦ ζυγοῦ κατὰ [174] τὰ Γ, Ε, τὸ δὲ Ζ χωρίον κρεμάσθω κατὰ τὸ Α καὶ ἰσορροπείτω τῷ ΔΓΚ τριγώνῳ οὕτως ἔχοντι ὡς νῦν κεῖται, ὃν δὲ λόγον ἔχει ἁ ΑΒ ποτὶ τὰν ΒΕ, τοῦτον ἐχέτω τὸ ΓΔΚ τρίγωνον ποτὶ τὸ Λ. Φαμὶ δὴ τὸ Ζ τοῦ μὲν Λ μεῖζον εἶμεν, τοῦ δὲ ΔΓΚ ἔλασσον.

   Δειχθήσεται ὁμοίως τῷ πρότερον.

   ι΄.

   Ἔστω πάλιν τὸ μὲν ΑΒΓ ζύγιον καὶ μέσον αὐτοῦ τὸ Β, τὸ δὲ ΒΔΗΚ τραπέζιον τὰς μὲν ποτὶ τοῖς Β, Η σαμείοις γωνίας ὀρθὰς ἔχον, τὰν δὲ ΚΔ πλευρὰν ἐπὶ τὸ Γ νεύουσαν, καὶ ὃν ἔχει λόγον ἁ ΑΒ ποτὶ τὰν ΒΗ, τοῦτον ἐχέτω τὸ ΒΔΚΗ τραπέζιον ποτὶ τὸ Λ, κρεμάσθω δὲ τὸ ΒΔΗΚ τραπέζιον ἐκ τοῦ ζυγοῦ κατὰ τὰ Β, Η σαμεῖα, κρεμάσθω δὲ καὶ τὸ Ζ χωρίον κατὰ τὸ Α καὶ ἰσορροπείτω τῷ ΒΔΚΗ τραπεζίῳ οὕτως ἔχοντι ὡς νῦν ὑπόκειται. Φαμὶ τὸ Ζ χωρίον ἔλασσον εἶμεν τοῦ Λ.

   Τετμάσθω γὰρ ἁ ΑΓ κατὰ τὸ Ε οὕτως ὥστε, ὃν ἔχει λόγον ἁ διπλασία τᾶς ΔΒ καὶ ἁ ΚΗ ποτὶ τὰν διπλασίαν τᾶς ΚΗ καὶ τὰν ΒΔ, τοῦτον ἔχειν τὰν ΕΗ ποτὶ τὰν ΒΕ, [175] καὶ διὰ τοῦ Ε παρὰ τὰν ΒΔ ἀχθεῖσα ἁ ΕΝ τετμάσθω δίχα κατὰ τὸ Θ· τοῦ δὴ ΒΔΗΚ τραπεζίου κέντρον ἐστὶ τοῦ βάρεος τὸ Θ· δέδεικται γὰρ τοῦτο ἐν τοῖς Μηχανικοῖς. Ἢν οὖν τὸ ΒΔΗΚ τραπέζιον κατὰ μὲν τὸ Ε κρεμασθῇ, ἀπὸ δὲ τῶν Β, Η σαμείων λυθῇ, μένει τὰν αὐτὰν ἔχον κατάστασιν διὰ τὰ αὐτὰ τοῖς πρότερον καὶ ἰσορροπεῖ τῷ Ζ χωρίῳ. Ἐπεὶ οὖν ἰσορροπεῖ τὸ ΒΔΗΚ τραπέζιον κατὰ τὸ Ε κρεμάμενον τῷ Ζ χωρίῳ κατὰ τὸ Α κρεμαμένῳ, ἐσσεῖται ὡς ἁ ΑΒ ποτὶ τὰν ΒΕ, τὸ ΒΔΗΚ τραπέζιον ποτὶ τὸ Ζ χωρίον· μείζονα ἄρα λόγον ἔχει τὸ ΒΔΗΚ τραπέζιον ποτὶ τὸ Ζ ἤπερ ποτὶ τὸ Λ, ἐπεὶ καὶ ἁ ΑΒ ποτὶ τὰν ΒΕ μείζονα λόγον ἔχει ἤπερ ποτὶ τὰν ΒΗ· ὥστε ἔλασσον ἐσσεῖται τὸ Ζ τοῦ Λ.

   ια΄.

   Ἔστω πάλιν τὸ μὲν ΑΓ ζύγιον καὶ μέσον αὐτοῦ τὸ Β, τὸ δὲ ΚΔΤΡ τραπέζιον ἔστω τὰς μὲν ΚΔ, ΤΡ πλευρὰς ἔχον ἐπὶ τὸ Γ νευούσας, τὰς δὲ ΔΡ, ΚΤ καθέτους ἐπὶ τὰν ΒΓ, καὶ ἁ ΔΡ ἐπὶ τὸ Β πιπτέτω, ὃν δὲ λόγον ἔχει ἁ ΑΒ ποτὶ τὰν ΒΗ, τοῦτον ἐχέτω τὸ ΔΚΤΡ τραπέζιον ποτὶ τὸ Λ, τὸ δὲ ΔΚΤΡ τραπέζιον κρεμάσθω ἐκ τοῦ ζυγοῦ κατὰ τὰ [176] Β, Η καὶ τὸ Ζ κατὰ τὸ Α, καὶ ἰσορροπείτω τὸ Ζ τῷ ΔΚΡΤ τραπεζίῳ οὕτως ἔχοντι ὡς νῦν κεῖται. Ὁμοίως δὴ τοῖς πρότερον δειχθήσεται ἔλασσον τὸ Ζ χωρίον τοῦ Λ.

   ιβ΄.

   Ἔστω πάλιν τὸ μὲν ΑΓ ζύγιον, μέσον δὲ αὐτοῦ τὸ Β, τὸ δὲ ΔΕΚΗ τραπέζιον ἔστω τὰς μὲν ποτὶ τοῖς Ε, Η σαμείοις γωνίας ὀρθὰς ἔχον, τὰς δὲ ΚΔ, ΕΗ γραμμὰς ποτὶ τὸ Γ νευούσας, καὶ ὃν μὲν λόγον ἔχει ἁ ΑΒ ποτὶ τὰν ΒΗ, τοῦτον ἐχέτω τὸ ΔΚΕΗ τραπέζιον ποτὶ τὸ Μ, ὃν δὲ λόγον ἔχει ἁ ΑΒ ποτὶ τὰν ΒΕ, τοῦτον τὸν λόγον ἐχέτω τὸ ΔΚΕΗ τραπέζιον ποτὶ τὸ Λ, κρεμάσθω δὲ τὸ ΔΚΕΗ τραπέζιον ἐκ τοῦ ζυγοῦ κατὰ τὰ Ε, Η, τὸ δὲ Ζ χωρίον κρεμάσθω κατὰ τὸ Α, καὶ ἰσορροπείτω τῷ τραπεζίῳ οὕτως ἔχοντι ὡς νῦν ὑπόκειται. Φαμὶ δὴ τὸ Ζ τοῦ μὲν Λ μεῖζον εἶμεν, τοῦ δὲ Μ ἔλασσον.

   Ἔλαβον γὰρ τοῦ ΔΚΕΗ τραπεζίου τὸ κέντρον τοῦ βάρεος, ἔστω δὲ τὸ Θ· λαφθήσεται δὲ ὁμοίως τῷ πρότερον· καὶ ἄγω τὰν ΘΙ παρὰ τὰν ΔΕ. Ἂν οὖν τὸ τραπέζιον ἐκ τοῦ ζυγοῦ κρεμασθῇ κατὰ τὸ Ι, ἀπὸ δὲ τῶν Ε, Η λυθῇ, [177] μενεῖ τὰν αὐτὰν ἔχον κατάστασιν καὶ ἰσορροπήσει τῷ Ζ διὰ τὰ αὐτὰ τοῖς πρότερον. Ἐπεὶ δὲ ἰσορροπεῖ τὸ τραπέζιον κρεμάμενον κατὰ τὸ Ι τῷ Ζ κρεμαμένῳ κατὰ τὸ Α, τὸν αὐτὸν ἕξει λόγον τὸ τραπέζιον ποτὶ τὸ Ζ, ὃν ἁ ΑΒ ποτὶ τὰν ΒΙ· δῆλον οὖν ὅτι τὸ ΔΚΕΗ ποτὶ μὲν τὸ Λ μείζονα λόγον ἔχει ἢ ποτὶ τὸ Ζ, ποτὶ δὲ τὸ Μ ἐλάσσονα ἢ ποτὶ τὸ Ζ· ὥστε τὸ Ζ τοῦ μὲν Λ μεῖζόν ἐστι, τοῦ δὲ Μ ἔλασσον.

   ιγ΄.

   Ἔστω πάλιν τὸ μὲν ΑΓ ζύγιον, κατὰ μέσον δὲ αὐτοῦ τὸ Β, τὸ δὲ ΚΔΤΡ τραπέζιον, ὥστε τὰς μὲν ΚΔ, ΤΡ πλευρὰς νευούσας εἶμεν ἐπὶ τὸ Γ, τὰς δὲ ΔΤ, ΚΡ καθέτους ἐπὶ τὰν ΒΓ, κρεμάσθω δὲ ἐκ τοῦ ζυγοῦ κατὰ τὰ Ε, Η, τὸ δὲ Ζ χωρίον κρεμάσθω κατὰ τὸ Α καὶ ἰσορροπείτω τῷ ΔΚΤΡ τραπεζίῳ οὕτως ἔχοντι ὡς νῦν κεῖται, καὶ ὃν μὲν λόγον ἔχει ἁ ΑΒ ποτὶ τὰν ΒΕ, τοῦτον ἐχέτω τὸ ΔΚΤΡ τραπέζιον ποτὶ τὸ Λ χωρίον, ὃν δὲ λόγον ἔχει ἁ ΑΒ ποτὶ τὰν ΒΗ, τοῦτον ἐχέτω τὸ αὐτὸ τραπέζιον ποτὶ τὸ Μ. Ὁμοίως δὴ τῷ πρότερον δειχθήσεται τὸ Ζ τοῦ μὲν Λ μεῖζον, τοῦ δὲ Μ ἔλασσον.

[178]    ιδ΄.

   Ἔστω τμᾶμα τὸ ΒΘΓ περιεχόμενον ὑπὸ εὐθείας καὶ ὀρθογωνίου κώνου τομᾶς. Ἔστω δὴ πρῶτον ἁ ΒΓ ποτ' ὀρθὰς τᾷ διαμέτρῳ, καὶ ἄχθω ἀπὸ μὲν τοῦ Β σαμείου ἁ ΒΔ παρὰ τὰν διάμετρον, ἀπὸ δὲ τοῦ Γ ἁ ΓΔ ἐπιψαύουσα τᾶς τοῦ κώνου τομᾶς κατὰ τὸ Γ· ἐσσεῖται δὴ τὸ ΒΓΔ τρίγωνον ὀρθογώνιον. Διῃρήσθω δὴ ἁ ΒΓ ἐς ἴσα τμάματα ὁποσαοῦν τὰ ΒΕ, ΕΖ, ΖΗ, ΗΙ, ΙΓ, καὶ ἀπὸ τᾶν τομᾶν ἄχθωσαν παρὰ τὰν διάμετρον αἱ ΕΣ, ΖΤ, ΗΥ, ΙΞ, ἀπὸ δὲ τῶν σαμείων, καθ' ἃ τέμνοντι αὗται τὰν τοῦ κώνου τομάν, ἐπεζεύχθωσαν ἐπὶ τὸ Γ καὶ ἐκβεβλήσθωσαν. Φαμὶ δὴ τὸ τρίγωνον τὸ ΒΔΓ τῶν μὲν τραπεζίων τῶν ΚΕ, ΛΖ, ΜΗ, ΝΙ καὶ τοῦ ΞΙΓ τριγώνου ἔλασσον εἶμεν ἢ τριπλάσιον, τῶν δὲ τραπεζίων τῶν ΖΦ, ΗΘ, ΙΠ καὶ τοῦ ΙΟΓ τριγώνου μεῖζον [ἐστιν] ἢ τριπλάσιον.

[179]    Διάχθω γὰρ εὐθεῖα ἁ ΑΒΓ, καὶ ἀπολελάφθω ἁ ΑΒ ἴσα τᾷ ΒΓ, καὶ νοείσθω ζύγιον τὸ ΑΓ· μέσον δὲ αὐτοῦ ἐσσεῖται τὸ Β· καὶ κρεμάσθω ἐκ τοῦ Β, κρεμάσθω δὲ καὶ τὸ ΒΔΓ ἐκ τοῦ ζυγοῦ κατὰ τὰ Β, Γ, ἐκ δὲ τοῦ θατέρου μέρεος τοῦ ζυγοῦ κρεμάσθω τὰ Ρ, Χ, Ψ, Ω, Δς χωρία κατὰ τὸ Α, καὶ ἰσορροπείτω τὸ μὲν Ρ χωρίον τῷ ΔΕ τραπεζίῳ οὕτως ἔχοντι, τὸ δὲ Χ τῷ ΖΣ τραπεζίῳ, τὸ δὲ Ψ τῷ ΤΗ, τὸ δὲ Ω τῷ ΥΙ, τὸ δὲ Δς τῷ ΞΙΓ τριγώνῳ· ἰσορροπήσει δὴ καὶ τὸ ὅλον τῷ ὅλῳ· ὥστε τριπλάσιον ἂν εἴη τὸ ΒΔΓ τρίγωνον τοῦ ΡΧΨΩΔς χωρίου. Καὶ ἐπεί ἐστιν τμᾶμα τὸ ΒΓΘ, ὃ περιέχεται ὑπό τε εὐθείας καὶ ὀρθογωνίου κώνου τομᾶς, καὶ ἀπὸ μὲν τοῦ Β παρὰ τὰν διάμετρον ἆκται ἁ ΒΔ, ἀπὸ δὲ τοῦ Γ ἁ ΓΔ ἐπιψαύουσα τᾶς τοῦ κώνου τομᾶς κατὰ τὸ Γ, ἆκται δέ τις καὶ ἄλλα παρὰ τὰν διάμετρον ἁ ΣΕ, τὸν αὐτὸν ἔχει λόγον ἁ ΒΓ ποτὶ τὰν ΒΕ, ὃν ἁ ΣΕ ποτὶ τὰν ΕΦ· ὥστε καὶ ἁ ΒΑ ποτὶ τὰν ΒΕ τὸν αὐτὸν ἔχει λόγον, ὃν τὸ ΔΕ τραπέζιον ποτὶ τὸ ΚΕ. Ὁμοίως δὲ δειχθήσεται ἁ ΑΒ ποτὶ τὰν ΒΖ τὸν αὐτὸν ἔχουσα λόγον, ὃν τὸ ΣΖ τραπέζιον ποτὶ τὸ ΛΖ, ποτὶ δὲ τὰν ΒΗ, ὃν τὸ ΤΗ ποτὶ τὸ ΜΗ, ποτὶ δὲ τὰν ΒΙ, ὃν τὸ ΥΙ ποτὶ τὸ ΝΙ. Ἐπεὶ οὖν ἐστι τραπέζιον τὸ ΔΕ τὰς μὲν ποτὶ τοῖς Β, Ε σαμείοις γωνίας ὀρθὰς ἔχον, τὰς δὲ πλευρὰς ἐπὶ τὸ Γ νευούσας, ἰσορροπεῖ δέ τι χωρίον αὐτῷ τὸ Ρ κρεμάμενον ἐκ τοῦ ζυγοῦ κατὰ τὸ Α οὕτως ἔχοντος τοῦ τραπεζίου ὡς νῦν κεῖται, καὶ ἔστιν ὡς ἁ ΒΑ ποτὶ τὰν ΒΕ, οὕτως τὸ ΔΕ τραπέζιον ποτὶ τὸ ΚΕ, μεῖζον ἄρα [180] ἐστὶν τὸ ΚΕ χωρίον τοῦ Ρ χωρίου : δέδεικται γὰρ τοῦτο. Πάλιν δὲ καὶ τὸ ΖΣ τραπέζιον τὰς μὲν ποτὶ τοῖς Ζ, Ε γωνίας ὀρθὰς ἔχον, τὰν δὲ ΣΤ νεύουσαν ἐπὶ τὸ Γ, ἰσορροπεῖ δὲ αὐτῷ χωρίον τὸ Χ ἐκ τοῦ ζυγοῦ κρεμάμενον κατὰ τὸ Α οὕτως ἔχοντος τοῦ τραπεζίου ὡς νῦν κεῖται, καὶ ἔστιν ὡς μὲν ἁ ΑΒ ποτὶ τὰν ΒΕ, οὕτως τὸ ΖΣ τραπέζιον ποτὶ τὸ ΖΦ, ὡς δὲ ἁ ΑΒ ποτὶ τὰν ΒΖ, οὕτως τὸ ΖΣ τραπέζιον ποτὶ τὸ ΛΖ· εἴη οὖν κα τὸ Χ χωρίον τοῦ μὲν ΛΖ τραπεζίου ἔλασσον, τοῦ δὲ ΖΦ μεῖζον· δέδεικται γὰρ καὶ τοῦτο. Διὰ τὰ αὐτὰ δὴ καὶ τὸ Ψ χωρίον τοῦ μὲν ΜΗ τραπεζίου ἔλασσον, τοῦ δὲ ΘΗ μεῖζον, καὶ τὸ Ω χωρίον τοῦ μὲν ΝΟΙΗ τραπεζίου ἔλασσον, τοῦ δὲ ΠΙ μεῖζον, ὁμοίως δὲ καὶ τὸ Δς χωρίον τοῦ μὲν ΞΙΓ τριγώνου ἔλασσον, τοῦ δὲ ΓΙΟ μεῖζον. Ἐπεὶ οὖν τὸ μὲν ΚΕ τραπέζιον μεῖζόν ἐστι τοῦ Ρ χωρίου, τὸ δὲ ΛΖ τοῦ Χ, τὸ δὲ ΜΗ τοῦ Ψ, τὸ δὲ ΝΙ τοῦ Ω, τὸ δὲ ΞΙΓ τρίγωνον τοῦ Δς, φανερὸν ὅτι καὶ πάντα τὰ εἰρημένα χωρία μείζονά ἐστι τοῦ ΡΧΨΩΔς χωρίου. Ἔστιν δὲ τὸ ΡΧΨΩΔς τρίτον μέρος τοῦ ΒΓΔ τριγώνου· δῆλον ἄρα ὅτι τὸ ΒΓΔ τρίγωνον ἔλασσόν ἐστιν ἢ τριπλάσιον τῶν ΚΕ, ΛΖ, ΜΗ, ΝΙ τραπεζίων καὶ τοῦ ΞΙΓ τριγώνου. Πάλιν, ἐπεὶ τὸ μὲν ΖΦ τραπέζιον ἔλασσόν ἐστι τοῦ Χ χωρίου, τὸ δὲ ΘΗ τοῦ Ψ, τὸ δὲ ΙΠ τοῦ Ω, τὸ δὲ ΙΟΓ τρίγωνον τοῦ Δς, φανερὸν ὅτι καὶ πάντα τὰ εἰρημένα ἐλάσσονά ἐστι τοῦ ΔσΩΨΧ χωρίου· φανερὸν οὖν ὅτι καὶ τὸ ΒΔΓ τρίγωνον μεῖζόν ἐστιν ἢ τριπλάσιον [181] τῶν ΦΖ, ΘΗ, ΙΠ τραπεζίων καὶ τοῦ ΙΓΟ τριγώνου, ἔλασσον δὲ ἢ τριπλάσιον τῶν προγεγραμμένων.

   ιε΄.

   Ἔστω πάλιν τὸ ΒΘΓ τμᾶμα περιεχόμενον ὑπὸ εὐθείας καὶ ὀρθογωνίου κώνου τομᾶς, ἁ δὲ ΒΓ μὴ ἔστω ποτ' ὀρθὰς τᾷ διαμέτρῳ· ἀναγκαῖον δὴ ἤτοι τὰν ἀπὸ τοῦ Β σαμείου παρὰ τὰν διάμετρον ἀγμέναν ἐπὶ τὰ αὐτὰ τῷ τμάματι ἢ τὰν ἀπὸ τοῦ Γ ἀμβλεῖαν ποιεῖν γωνίαν ποτὶ τὰν ΒΓ. Ἔστω ἁ τὰν ἀμβλεῖαν ποιοῦσα ἁ ποτὶ τῷ Β, καὶ ἄχθω παρὰ τὰν διάμετρον ἀπὸ τοῦ Β ἁ ΒΔ, καὶ ἀπὸ τοῦ Γ ἁ ΓΔ ἐπιψαύουσα τᾶς τοῦ κώνου τομᾶς κατὰ τὸ Γ, καὶ διῃρήσθω ἁ ΒΓ εἰς τμάματα ἴσα ὁποσαοῦν τὰ ΒΕ, ΕΖ, ΖΗ, ΗΙ, ΙΓ, ἀπὸ δὲ τῶν Ε, Ζ, Η, Ι παρὰ τὰν διάμετρον ἄχθωσαν αἱ ΕΣ, ΖΤ, ΗΨ, ΙΞ, καὶ ἀπὸ τῶν σαμείων, καθ' ἃ τέμνοντι αὗται τὰν τοῦ κώνου τομάν, ἐπεζεύχθωσαν ἐπὶ τὸ Γ καὶ ἐκβεβλήσθωσαν. Φαμὶ δὴ καὶ νῦν τὸ ΒΔΓ τρίγωνον τῶν μὲν τραπεζίων τῶν ΒΦ, ΛΖ, ΜΗ, ΝΙ καὶ τοῦ ΓΙΞ τριγώνου ἔλασσον εἶμεν ἢ τριπλάσιον, τῶν δὲ ΖΦ, ΗΘ, ΙΠ καὶ τοῦ ΓΟΙ τριγώνου μεῖζον ἢ τριπλάσιον.

   Ἐκβεβλήσθω ἁ ΔΒ ἐπὶ θάτερα. Ἀγαγὼν οὖν κάθετον τὰν ΓΚ τᾷ ΓΚ ἴσαν ἀπέλαβον τὰν ΑΚ. Νοείσθω δὴ πάλιν ζύγιον τὸ ΑΓ, μέσον δὲ αὐτοῦ τὸ Κ, καὶ κρεμάσθω ἐκ τοῦ Κ, κρεμάσθω δὲ καὶ τὸ ΓΚΔ τρίγωνον ἐκ τοῦ ἡμίσεος τοῦ ζυγοῦ κατὰ τὰ Γ, Κ ἔχον ὡς νῦν κεῖται, καὶ ἐκ τοῦ θατέρου μέρεος τοῦ ζυγοῦ κρεμάσθωσαν κατὰ τὸ Α τὰ Ρ,

[182] Χ, Ψ, Ω, Δς χωρία, καὶ τὸ μὲν Ρ τῷ ΔΕ τραπεζίῳ ἰσορροπείτω οὕτως ἔχοντι ὡς νῦν κεῖται, τὸ δὲ Χ τῷ ΖΣ τραπεζίῳ, τὸ δὲ Ψ τῷ ΤΗ, τὸ δὲ Ω τῷ ΥΙ, τὸ δὲ Δς τῷ ΓΙΞ τριγώνῳ· ἰσορροπήσει δὴ καὶ τὸ ὅλον τῷ ὅλῳ· ὥστε εἴη ἂν καὶ τὸ ΔΒΓ τρίγωνον τριπλάσιον τοῦ ΡΧΨΩΔς χωρίου. Ὁμοίως δὴ τῷ πρότερον δειχθήσεται τό τε ΒΦ τραπέζιον τοῦ Ρ χωρίου μεῖζον, καὶ τὸ μὲν ΘΕ τραπέζιον μεῖζον ἐὸν τοῦ Χ χωρίου, τὸ δὲ ΖΦ ἔλαττον, καὶ τὸ μὲν ΜΗ τραπέζιον μεῖζον ἐὸν τοῦ Ψ χωρίου, τὸ δὲ ΗΘ ἔλασσον, καὶ ἔτι τὸ μὲν ΝΙ τραπέζιον μεῖζον ἐὸν τοῦ Ω χωρίου, τὸ δὲ ΠΙ ἔλασσον, καὶ τὸ μὲν ΞΙΓ τρίγωνον μεῖζον τοῦ Δς χωρίου, τὸ δὲ ΓΙΟ ἔλασσον· δῆλον οὖν ἐστιν.

   ιϚ΄.

   Ἔστω πάλιν τμᾶμα τὸ ΒΘΓ περιεχόμενον ὑπὸ εὐθείας καὶ ὀρθογωνίου κώνου τομᾶς, καὶ ἄχθω διὰ μὲν τοῦ Β [183] ἁ ΒΔ παρὰ τὰν διάμετρον, ἀπὸ δὲ τοῦ Γ ἁ ΓΔ ἐπιψαύουσα τᾶς τοῦ κώνου τομᾶς κατὰ τὸ Γ, ἔστω δὲ τοῦ ΒΔΓ τριγώνου τρίτον μέρος τῷ Ζ χωρίον. Φαμὶ δὴ τὸ ΒΘΓ τμᾶμα ἴσον εἶμεν τῷ Ζ χωρίῳ.

   Εἰ γὰρ μή ἐστιν ἴσον, ἤτοι μεῖζόν ἐστιν ἢ ἔλασσον. Ἔστω δὴ πρότερον, εἰ δυνατόν, μεῖζον· ἁ δὴ ὑπεροχά, ᾇ ὑπερέχει τὸ ΒΘΓ τμᾶμα τοῦ Ζ χωρίου, συντιθεμένα αὐτὰ ἑαυτᾷ ἐσσεῖται μείζων τοῦ ΒΓΔ τριγώνου. Δυνατὸν δέ ἐστι λαβεῖν τι χωρίον ἔλασσον τᾶς ὑπεροχᾶς, ὃ ἐσσεῖται μέρος τοῦ ΒΔΓ τριγώνου. Ἔστω δὴ τὸ ΒΓΕ τρίγωνον ἔλασσόν τε τᾶς εἰρημένας ὑπεροχᾶς καὶ μέρος τοῦ ΒΔΓ τριγώνου· ἐσσεῖται δὲ τὸ αὐτὸ ἁ ΒΕ μέρος τᾶς ΒΔ. Διῃρήσθω οὖν ἁ ΒΔ ἐς τὰ μέρεα, καὶ ἔστω τὰ τῶν διαιρέσιων σαμεῖα τὰ Η, Ι, Κ, καὶ ἀπὸ τῶν Η, Ι, Κ σαμείων [184] ἐπὶ τὸ Γ εὐθεῖαι ἐπεζεύχθωσαν· τέμνοντι δὴ αὗται τὰν τοῦ κώνου τομάν, ἐπεὶ ἁ ΓΔ ἐπιψαύουσά ἐντι αὐτᾶς κατὰ τὸ Γ· καὶ διὰ τῶν σαμείων, καθ' ἃ τέμνοντι τὰν τομὰν αἱ εὐθεῖαι, ἄχθωσαν παρὰ τὰν διάμετρον αἱ ΜΦ, ΝΡ, ΞΘ, ΠΟ· ἐσσοῦνται δὲ αὗται καὶ παρὰ τὰν ΒΔ. Ἐπεὶ οὖν ἔλασσόν ἐστι τὸ ΒΓΕ τρίγωνον τᾶς ὑπεροχᾶς, ᾇ ὑπερέχει τὸ ΒΘΓ τμᾶμα τοῦ Ζ χωρίου, δῆλον ὡς τὰ συναμφότερα τό τε Ζ χωρίον καὶ τὸ ΒΓΕ τρίγωνον ἐλάσσονά ἐντι τοῦ τμάματος. Καὶ τῷ ΒΓΕ τριγώνῳ ἴσα τὰ τραπέζιά ἐντι, δι' ὧν ἁ τοῦ κώνου τομὰ πορεύεται, τὰ ΜΕ, ΦΛ, ΘΡ, ΘΟ, καὶ τὸ ΓΟΣ τρίγωνον· τὸ μὲν γὰρ ΜΕ τραπέζιον κοινόν, τὸ δὲ ΜΛ ἴσον τῷ ΦΛ καὶ τὸ ΛΞ ἴσον τῷ ΘΡ καὶ τὸ ΧΞ ἴσον τῷ ΟΘ καὶ τὸ ΓΧΠ τρίγωνον τῷ ΓΟΣ τριγώνῳ· τὸ δὴ Ζ χωρίον ἔλασσόν ἐστι τῶν τραπεζίων τῶν ΜΛ, ΞΡ, ΠΘ καὶ τοῦ ΠΟΓ τριγώνου. Καί ἐστι τὸ ΒΔΓ τρίγωνον τριπλάσιον τοῦ Ζ χωρίου· τὸ δὲ ΒΔΓ ἔλασσόν ἐστιν ἢ τριπλάσιον τῶν ΜΛ, ΡΞ, ΘΠ τραπεζίων καὶ τοῦ ΠΟΓ τριγώνου· ὅπερ ἀδύνατον· ἐδείχθη γὰρ μεῖζον ἐὸν ἢ τριπλάσιον. Οὐκοῦν οὐ μεῖζόν ἐστι τὸ ΒΘΓ τμᾶμα τοῦ Ζ χωρίου.

   Λέγω δὴ ὅτι οὐδὲ ἔλασσον. Ἔστω γάρ, εἰ δυνατόν, ἔλασσον. Πάλιν ἄρα ἁ ὑπεροχά, ᾇ ὑπερέχει τὸ Ζ χωρίον τοῦ ΒΘΓ τμάματος, αὐτὰ ἑαυτᾷ συντιθεμένα ὑπερέχει καὶ τοῦ ΒΔΓ τριγώνου. Δυνατὸν δέ ἐστι λαβεῖν χωρίον ἔλασσον τᾶς ὑπεροχᾶς, ὃ ἐσσεῖται μέρος τοῦ ΒΔΓ τριγώνου. Ἔστω οὖν τὸ ΒΓΕ τρίγωνον ἔλασσον τᾶς ὑπεροχᾶς καὶ μέρος τοῦ ΒΔΓ τριγώνου, καὶ τὰ ἄλλα τὰ αὐτὰ κατεσκευάσθω. Ἐπεὶ οὖν ἐστι τὸ ΒΓΕ τρίγωνον ἔλασσον τᾶς [185] ὑπεροχᾶς, ᾇ ὑπερέχει τὸ Ζ χωρίον τοῦ ΒΘΓ τμάματος, τὸ ΒΕΓ τρίγωνον καὶ τὸ ΒΘΓ τμᾶμα ἀμφότερα ἐλάσσονά ἐστι τοῦ Ζ. Ἔστιν δὲ καὶ τὸ Ζ χωρίον ἔλασσον τῶν τετραπλεύρων τῶν ΕΜ, ΦΝ, ΨΞ, ΠΤ καὶ τοῦ ΓΠΣ τριγώνου· ἔστιν γὰρ τὸ ΒΔΓ τοῦ μὲν Ζ τριπλάσιον, τῶν δὲ εἰρημένων χωρίων ἔλασσον ἢ τριπλάσιον, ὡς ἐν τῷ πρὸ τούτου ἐδείχθη· ἔλασσον ἄρα τὸ ΒΓΕ τρίγωνον καὶ τὸ ΒΘΓ τμᾶμα τῶν τετραπλεύρων τῶν ΕΜ, ΦΝ, ΞΨ, ΠΤ καὶ τοῦ ΓΠΣ τριγώνου. Ὥστε κοινοῦ ἀφαιρεθέντος τοῦ τμάματος ἔλασσον εἴη κα καὶ τὸ ΓΒΕ τρίγωνον τῶν περιλειπομένων χωρίων· ὅπερ ἐστὶν ἀδύνατον· ἐδείχθη γὰρ ἴσον ἐὸν τὸ ΒΕΓ τρίγωνον τοῖς τραπεζίοις τοῖς ΕΜ, ΦΛ, ΘΡ, ΘΟ καὶ τῷ ΓΟΣ τριγώνῳ, ἅ ἐντι μείζονα τῶν περιλειπομένων χωρίων. Οὐκ ἄρα ἔλασσον τὸ ΒΘΓ τμᾶμα τοῦ Ζ χωρίου. Ἐδείχθη δὲ ὅτι οὐδὲ μεῖζον· ἴσον ἄρα τὸ τμᾶμα τῷ Ζ χωρίῳ.

   ιζ΄.

   Τούτου δεδειγμένου φανερὸν ὅτι πᾶν τμᾶμα περιεχόμενον ὑπὸ εὐθείας τε καὶ ὀρθογωνίου κώνου τομᾶς ἐπίτριτόν ἐστι τοῦ τριγώνου τοῦ ἔχοντος βάσιν τὰν αὐτὰν τῷ τμάματι καὶ ὕψος ἴσον.

   Ἔστω γὰρ τμᾶμα περιεχόμενον ὑπὸ εὐθείας τε καὶ ὀρθογωνίου κώνου τομᾶς, κορυφὰ δὲ αὐτοῦ ἔστω τὸ Θ σαμεῖον, καὶ ἐγγεγράφθω εἰς αὐτὸ τρίγωνον τὸ ΒΘΓ τὰν αὐτὰν βάσιν ἔχον τῷ τμάματι καὶ ὕψος ἴσον. Ἐπεὶ οὖν τὸ Θ σαμεῖον κορυφά ἐστι τοῦ τμάματος, ἁ ἀπὸ τοῦ Θ εὐθεῖα παρὰ τὰν διάμετρον ἀχθεῖσα δίχα τέμνει τὰν ΒΓ, καὶ ἁ ΒΓ ἐστὶ παρὰ τὰν ἐπιψαύουσαν τᾶς τομᾶς κατὰ τὸ Θ. Ἄχθω δὲ ἁ ΕΘ παρὰ τὰν διάμετρον, ἄχθω

[186] δὲ καὶ ἀπὸ τοῦ Β παρὰ τὰν διάμετρον ἁ ΒΔ, ἀπὸ δὲ τοῦ Γ ἁ ΓΔ ἐπιψαύουσα τᾶς τοῦ κώνου τομᾶς κατὰ τὸ Γ. Ἐπεὶ οὖν ἁ μὲν ΚΘ παρὰ τὰν διάμετρόν ἐστιν, ἁ δὲ ΓΔ ἐπιψαύουσα τᾶς τομᾶς κατὰ τὸ Γ, ἁ δὲ ΕΓ παράλληλός ἐστι τᾷ ἐπιψαυούσᾳ τᾶς τομᾶς κατὰ τὸ Θ, τὸ ΒΔΓ τρίγωνον τετραπλάσιόν ἐστι τοῦ ΒΘΓ τριγώνου. Ἐπεὶ δὲ τὸ ΒΔΓ τρίγωνον τοῦ μὲν ΒΘΓ τμάματος τριπλάσιόν ἐστι, τοῦ δὲ ΒΘΓ τριγώνου τετραπλάσιον, δῆλον ὡς ἐπίτριτόν ἐστι τὸ ΒΘΓ τμᾶμα τοῦ ΒΘΓ τριγώνου.

   Τῶν τμαμάτων τῶν περιεχομένων ὑπό τε εὐθείας καὶ καμπύλας γραμμᾶς βάσιν μὲν καλέω τὰν εὐθεῖαν, ὕψος δὲ τὰν μεγίσταν κάθετον ἀπὸ τᾶς καμπύλας γραμμᾶς ἀγομέναν ἐπὶ τὰν βάσιν τοῦ τμάματος, κορυφὰν δὲ τὸ σαμεῖον, ἀφ' οὗ ἁ μεγίστα κάθετος ἄγεται.

   ιη΄.

   Εἴ κα ἐν τμάματι, ὃ περιέχεται ὑπὸ εὐθείας καὶ ὀρθογωνίου κώνου τομᾶς, ἀπὸ μέσας τᾶς βάσιος ἀχθῇ εὐθεῖα [187] παρὰ τὰν διάμετρον, κορυφὰ ἐσσεῖται τοῦ τμάματος τὸ σαμεῖον, καθ' ὃ ἁ παρὰ τὰν διάμετρον ἀχθεῖσα τέμνει τὰν τοῦ κώνου τομάν.

   Ἔστω γὰρ τμᾶμα τὸ ΑΒΓ περιεχόμενον ὑπό τε εὐθείας καὶ ὀρθογωνίου κώνου τομᾶς, καὶ ἀπὸ μέσας τᾶς ΑΓ ἄχθω ἁ ΔΒ παρὰ τὰν διάμετρον. Ἐπεὶ οὖν ἐν ὀρθογωνίου κώνου τομᾷ ἁ ΒΔ ἆκται παρὰ τὰν διάμετρον, καὶ ἴσαι ἐντὶ αἱ ΑΔ, ΔΓ, δῆλον ὡς παράλληλοί ἐντι ἅ τε ΑΓ καὶ ἁ κατὰ τὸ Β ἐπιψαύουσα τᾶς τοῦ κώνου τομᾶς. Φανερὸν οὖν ὅτι τᾶν ἀπὸ τᾶς τομᾶς ἐπὶ τὰν ΑΓ ἀγομενᾶν καθέτων μεγίστα ἐσσεῖται ἁ ἀπὸ τοῦ Β ἀγομένα· κορυφὰ οὖν ἐστιν τοῦ τμάματος τὸ Β σαμεῖον.

   ιθ΄.

   Ἐν τμάματι περιεχομένῳ ὑπὸ εὐθείας καὶ ὀρθογωνίου κώνου τομᾶς ἁ ἀπὸ μέσας τᾶς βάσιος ἀχθεῖσα τᾶς ἀπὸ μέσας τᾶς ἡμισείας ἀγομένας ἐπίτριτος ἐσσεῖται μάκει.

[188]    Ἔστω γὰρ τὸ ΑΒΓ τμᾶμα περιεχόμενον ὑπὸ εὐθείας καὶ ὀρθογωνίου κώνου τομᾶς, καὶ ἄχθω παρὰ τὰν διάμετρον ἁ μὲν ΒΔ ἀπὸ μέσας τᾶς ΑΓ, ἁ δὲ ΕΖ ἀπὸ μέσας τᾶς ΑΔ, ἄχθω δὲ καὶ ἁ ΖΘ παρὰ ΑΓ. Ἐπεὶ οὖν ἐν ὀρθογωνίου κώνου τομᾷ ἁ ΒΔ παρὰ τὰν διάμετρον ἆκται, καὶ αἱ ΑΔ, ΖΘ παρὰ τὰν κατὰ τὸ Β ἐπιψαύουσάν ἐντι, δῆλον ὡς τὸν αὐτὸν ἔχει λόγον ἁ ΒΔ ποτὶ τὰν ΒΘ μάκει, ὃν ἁ ΑΔ ποτὶ τὰν ΖΘ δυνάμει· τετραπλασία ἄρα ἐστὶν καὶ ἁ ΒΔ τᾶς ΒΘ μάκει. Φανερὸν οὖν ὅτι ἐπίτριτός ἐστιν ἁ ΒΔ τᾶς ΕΖ μάκει.

   κ΄.

   Εἴ κα εἰς τμᾶμα περιεχόμενον ὑπό τε εὐθείας καὶ ὀρθογωνίου κώνου τομᾶς τρίγωνον ἐγγραφῇ τὰν αὐτὰν βάσιν ἔχον τῷ τμάματι καὶ ὕψος τὸ αὐτό, μεῖζον ἐσσεῖται τὸ ἐγγραφὲν τρίγωνον ἢ ἥμισυ τοῦ τμάματος.

   Ἔστω γὰρ τὸ ΑΒΓ τμᾶμα οἷον εἴρηται, καὶ ἐγγεγράφθω εἰς αὐτὸ τρίγωνον τὸ ΑΒΓ τὰν αὐτὰν ἔχον βάσιν τῷ ὅλῳ καὶ ὕψος ἴσον. Ἐπεὶ οὖν τὸ τρίγωνον τῷ τμάματι τὰν αὐτὰν ἔχει βάσιν καὶ ὕψος τὸ αὐτό, ἀναγκαῖον τὸ Β σαμεῖον κορυφὰν εἶμεν τοῦ τμάματος· παράλληλος ἄρα ἐστὶν ἁ ΑΓ τᾷ κατὰ τὸ Β ἐπιψαυούσᾳ τᾶς τομᾶς. [189] Ἄχθω ἁ ΔΕ διὰ τοῦ Β παρὰ τὰν ΑΓ καὶ ἀπὸ τῶν Α, Γ αἱ ΑΔ, ΓΕ παρὰ τὰν διάμετρον· πεσοῦνται δὴ αὗται ἐκτὸς τοῦ τμάματος. Ἐπεὶ οὖν ἥμισύ ἐστι τὸ ΑΒΓ τρίγωνον τοῦ ΑΔΕΓ παραλληλογράμμου, φανερὸν ὅτι μεῖζόν ἐστιν ἢ τὸ ἥμισυ τοῦ τμάματος.

ΠΟΡΙΣΜΑ

   Δεδειγμένου δὲ τούτου δῆλον ὅτι ὡς ἐς τοῦτο τὸ τμᾶμα δυνατόν ἐστι πολύγωνον ἐγγράψαι, ὥστε εἶμεν τὰ περιλειπόμενα τμάματα παντὸς ἐλάσσονα τοῦ προτεθέντος χωρίου· ἀφαιρουμένου γὰρ ἀεὶ μείζονος τοῦ ἡμίσεος διὰ τοῦτο φανερὸν ὅτι ἐλασσοῦντες ἀεὶ τὰ λειπόμενα τμάματα ποιήσομες ταῦτα ἐλάσσονα παντὸς τοῦ προτεθέντος χωρίου.

   κα΄.

   Εἴ κα εἰς τμᾶμα περιεχόμενον ὑπὸ εὐθείας καὶ ὀρθογωνίου κώνου τομᾶς τρίγωνον ἐγγραφῇ τὰν αὐτὰν βάσιν ἔχον τῷ τμάματι καὶ ὕψος τὸ αὐτό, ἐγγραφέωντι δὲ καὶ ἄλλα τρίγωνα εἰς τὰ λειπόμενα τμάματα τὰν αὐτὰν βάσιν ἔχοντα τοῖς τμαμάτεσσιν καὶ ὕψος τὸ αὐτό, ἑκατέρου τῶν τριγώνων τῶν εἰς τὰ περιλειπόμενα τμάματα ἐγγραφέντων ὀκταπλάσιον ἐσσεῖται τὸ τρίγωνον τὸ εἰς τὸ ὅλον τμᾶμα ἐγγραφέν.

   Ἔστω τὸ ΑΒΓ τμᾶμα οἷον εἴρηται, καὶ τετμάσθω ἁ ΑΓ δίχα τῷ Δ, ἁ δὲ ΒΔ ἄχθω παρὰ τὰν διάμετρον· τὸ Β ἄρα σαμεῖον κορυφά ἐστιν τοῦ τμάματος. Τὸ ἄρα ΑΒΓ

[190] τρίγωνον τὰν αὐτὰν βάσιν ἔχει τῷ τμάματι καὶ ὕψος τὸ αὐτό. Πάλιν τετμάσθω δίχα ἁ ΑΔ τῷ Ε, καὶ ἄχθω ἁ ΕΖ παρὰ τὰν διάμετρον, τετμάσθω δὲ ἁ ΑΒ κατὰ τὸ Θ· τὸ ἄρα Ζ σαμεῖον κορυφά ἐστι τοῦ τμάματος τοῦ ΑΖΒ. Τὸ δὴ ΑΖΒ τρίγωνον τὰν αὐτὰν βάσιν ἔχει τῷ [ΑΖΒ] τμάματι καὶ ὕψος τὸ αὐτό. Δεικτέον ὅτι ὀκταπλάσιόν ἐστι τὸ ΑΒΓ τρίγωνον τοῦ ΑΖΒ τριγώνου.

   Ἔστιν οὖν ἁ ΒΔ τᾶς μὲν ΕΖ ἐπίτριτος, τᾶς δὲ ΕΘ διπλασία· διπλασία ἄρα ἐστὶν ἁ ΕΘ τᾶς ΘΖ. Ὥστε καὶ τὸ ΑΕΒ τρίγωνον διπλάσιόν ἐστι τοῦ ΖΒΑ· τὸ μὲν γὰρ ΑΕΘ διπλάσιόν ἐστι τοῦ ΑΘΖ, τὸ δὲ ΘΒΕ τοῦ ΖΘΒ. Ὥστε τὸ ΑΒΓ τοῦ ΑΖΒ ἐστὶν ὀκταπλάσιον. Ὁμοίως δὲ δειχθήσεται καὶ τοῦ εἰς τὸ ΒΗΓ τμᾶμα ἐγγραφέντος.

   κβ΄.

   Εἴ κα ᾖ τμᾶμα περιεχόμενον ὑπὸ εὐθείας καὶ ὀρθογωνίου κώνου τομᾶς, καὶ χωρία τεθέωντι ἑξῆς ὁποσαοῦν ἐν τῷ τετραπλασίονι λόγῳ, ᾖ δὲ τὸ μέγιστον τῶν χωρίων ἴσον τῷ τριγώνῳ τῷ βάσιν ἔχοντι τὰν αὐτὰν τῷ τμάματι καὶ ὕψος τὸ αὐτό, σύμπαντα τὰ χωρία ἐλάσσονα ἐσσεῖται τοῦ τμάματος.

[191]    Ἔστω γὰρ τμᾶμα τὸ ΑΔΒΕΓ περιεχόμενον ὑπό τε εὐθείας καὶ ὀρθογωνίου κώνου τομᾶς, χωρία δὲ ἔστω ὁποσαοῦν ἑξῆς κείμενα τὰ Ζ, Η, Θ, Ι, τετραπλάσιον δὲ ἔστω τὸ ἁγούμενον τοῦ ἑπομένου, μέγιστον δὲ ἔστω τὸ Ζ, καὶ ἔστω τὸ Ζ ἴσον τῷ τριγώνῳ τῷ βάσιν ἔχοντι τὰν αὐτὰν τῷ τμάματι καὶ ὕψος ἴσον. Λέγω ὅτι τὸ τμᾶμα τῶν Ζ, Η, Θ, Ι χωρίων μεῖζόν ἐστιν.

   Ἔστω τοῦ μὲν ὅλου τμάματος κορυφὰ τὸ Β, τῶν δὲ περιλειπομένων τμαμάτων τὰ Δ, Ε. Ἐπεὶ οὖν τὸ ΑΒΓ τρίγωνον ὀκταπλάσιόν ἐστιν ἑκατέρου τῶν ΑΔΒ, ΒΕΓ τριγώνων, δῆλον ὅτι ὡς ἀμφοτέρων αὐτῶν ἐστι τετραπλάσιον. Καὶ ἐπεὶ τὸ ΑΒΓ τρίγωνον ἴσον ἐστὶ τῷ Ζ χωρίῳ, κατὰ ταῦτα δὴ καὶ τὰ ΑΔΒ, ΒΕΓ τρίγωνα ἴσα ἐστὶ τῷ Η χωρίῳ. Ὁμοίως δὲ δειχθήσεται ὅτι καὶ τὰ εἰς τὰ περιλειπόμενα τμάματα ἐγγραφόμενα τρίγωνα τὰν αὐτὰν βάσιν ἔχοντα τοῖς τμαμάτεσσιν καὶ ὕψος τὸ αὐτὸ ἴσα ἐντὶ [192] τῷ Θ καὶ τὰ ἐς τὰ ὕστερον γενόμενα τμάματα ἐγγραφόμενα τρίγωνα ἴσα τῷ Ι χωρίῳ· σύμπαντα ἄρα τὰ προτεθέντα χωρία ἴσα ἐσσοῦνται πολυγώνῳ τινὶ ἐγγραφέντι εἰς τὸ τμᾶμα. Φανερὸν οὖν ὅτι ἐλάσσονά ἐστι τοῦ τμάματος.

   κγ΄.

   Εἴ κα μεγέθεα τεθέωντι ἑξῆς ἐν τῷ τετραπλασίονι λόγῳ, τὰ πάντα μεγέθεα καὶ ἔτι τοῦ ἐλαχίστου τὸ τρίτον μέρος ἐς τὸ αὐτὸ συντεθέντα ἐπίτριτα ἐσσοῦνται τοῦ μεγίστου.

   Ἔστω οὖν ὁποσαοῦν μεγέθεα ἑξῆς κείμενα τὰ Α, Β, Γ, Δ, Ε τετραπλασίονα ἕκαστον τοῦ ἑπομένου, μέγιστον δὲ ἔστω τὸ Α, ἔστω δὲ τὸ μὲν Ζ τρίτον τοῦ Β, τὸ δὲ Η τοῦ Γ, τὸ δὲ Θ τοῦ Δ, τὸ δὲ Ι τοῦ Ε. Ἐπεὶ οὖν τὸ μὲν Ζ τοῦ Β τρίτον μέρος ἐστίν, τὸ δὲ Β τοῦ Α τέταρτον μέρος ἐστίν, ἀμφότερα τὰ Β, Ζ μέρος τρίτον ἐστὶ τοῦ Α. Διὰ τὰ αὐτὰ δὴ καὶ τὰ Η, Γ τοῦ Β καὶ τὰ Θ, Δ τοῦ Γ καὶ τὰ Ι, Ε τοῦ Δ· καὶ τὰ σύμπαντα δὴ τὰ Β, Γ, Δ, Ε, Ζ, Η, Θ, Ι τρίτον μέρος ἐστὶ τῶν συμπάντων τῶν Α, Β, Γ, Δ. Ἐντὶ δὲ καὶ [193] αὐτὰ τὰ Ζ, Η, Θ τρίτον μέρος αὐτῶν τῶν Β, Γ, Δ· καὶ τὰ λοιπὰ ἄρα τὰ Β, Γ, Δ, Ε, Ι τοῦ λοιποῦ τρίτον μέρος ἐστὶ τοῦ Α. Δῆλον οὖν ὅτι τὰ σύμπαντα τὰ Α, Β, Γ, Δ, Ε καὶ τὸ Ι, τουτέστι τὸ τρίτον τοῦ Ε, τοῦ Α ἐστὶν ἐπίτριτα.

   κδ΄.

   Πᾶν τμᾶμα τὸ περιεχόμενον ὑπὸ εὐθείας καὶ ὀρθογωνίου κώνου τομᾶς ἐπίτριτόν ἐστι τριγώνου τοῦ τὰν αὐτὰν βάσιν ἔχοντος αὐτῷ καὶ ὕψος ἴσον.

   Ἔστω γὰρ τὸ ΑΔΒΕΓ τμᾶμα περιεχόμενον ὑπὸ εὐθείας καὶ ὀρθογωνίου κώνου τομᾶς, τὸ δὲ ΑΒΓ τρίγωνον ἔστω τὰν αὐτὰν βάσιν ἔχον τῷ τμάματι καὶ ὕψος ἴσον, τοῦ δὲ ΑΒΓ τριγώνου ἔστω ἐπίτριτον τὸ Κ χωρίον. Δεικτέον ὅτι ἴσον ἐστὶ τῷ ΑΔΒΕΓ τμάματι.

   Εἰ γὰρ μή ἐστιν ἴσον, ἤτοι μεῖζόν ἐστιν ἢ ἔλασσον. Ἔστω πρότερον, εἰ δυνατόν, μεῖζον τὸ ΑΔΒΕΓ τμᾶμα τοῦ Κ χωρίου. Ἐνέγραψα δὴ τὰ ΑΔΒ, ΒΕΓ τρίγωνα, ὡς εἴρηται, ἐνέγραψα δὲ καὶ εἰς τὰ περιλειπόμενα τμάματα ἄλλα τρίγωνα τὰν αὐτὰν βάσιν ἔχοντα τοῖς τμαμάτεσσιν καὶ ὕψος τὸ αὐτό, καὶ ἀεὶ εἰς τὰ ὕστερον γινόμενα τμάματα ἐγγράφω δύο τρίγωνα τὰν αὐτὰν βάσιν ἔχοντα τοῖς τμαμάτεσσιν καὶ ὕψος τὸ αὐτό· ἐσσοῦνται δὴ τὰ καταλειπόμενα [194] τμάματα ἐλάσσονα τᾶς ὑπεροχᾶς, ᾇ ὑπερέχει τὸ ΑΔΒΕΓ τμᾶμα τοῦ Κ χωρίου. Ὥστε τὸ ἐγγραφόμενον πολύγωνον μεῖζον ἐσσεῖται τοῦ Κ· ὅπερ ἀδύνατον. Ἐπεὶ γάρ ἐστιν ἑξῆς κείμενα χωρία ἐν τῷ τετραπλασίονι λόγῳ, πρῶτον μὲν τὸ ΑΒΓ τρίγωνον τετραπλάσιον τῶν ΑΔΒ, ΒΕΓ τριγώνων, ἔπειτα δὲ αὐτὰ ταῦτα τετραπλάσια τῶν εἰς τὰ ἑπόμενα τμάματα ἐγγραφέντων καὶ ἀεὶ οὕτω, δῆλον ὡς σύμπαντα τὰ χωρία ἐλάσσονά ἐστιν ἢ ἐπίτριτα τοῦ μεγίστου, τὸ δὲ Κ ἐπίτριτόν ἐστι τοῦ μεγίστου χωρίου. Οὐκ ἄρα ἐστὶν μεῖζον τὸ ΑΔΒΕΓ τμᾶμα τοῦ Κ χωρίου.

   Ἔστω δέ, εἰ δυνατόν, ἔλασσον. Κείσθω δὴ τὸ μὲν ΑΒΓ τρίγωνον ἴσον τῷ Ζ, τοῦ δὲ Ζ τέταρτον τὸ Η, καὶ ὁμοίως τοῦ Η τὸ Θ, καὶ ἀεὶ ἑξῆς τιθέσθω, ἕως κα γένηται τὸ ἔσχατον ἔλασσον τᾶς ὑπεροχᾶς, ᾇ ὑπερέχει τὸ Κ χωρίον τοῦ τμάματος, καὶ ἔστω ἔλασσον τὸ Ι· ἔστιν δὴ τὰ Ζ, Η, Θ, Ι χωρία καὶ τὸ τρίτον τοῦ Ι ἐπίτριτα τοῦ Ζ. Ἔστιν δὲ καὶ τὸ Κ τοῦ Ζ ἐπίτριτον· ἴσον ἄρα τὸ Κ τοῖς Ζ, Η, Θ, Ι καὶ τῷ τρίτῳ μέρει τοῦ Ι. Ἐπεὶ οὖν τὸ Κ χωρίον [195] τῶν μὲν Ζ, Η, Θ, Ι χωρίων ὑπερέχει ἐλάσσονι τοῦ Ι, τοῦ δὲ τμάματος μείζονι τοῦ Ι, δῆλον ὡς μείζονά ἐντι τὰ Ζ, Η, Θ, Ι χωρία τοῦ τμάματος· ὅπερ ἀδύνατον· ἐδείχθη γὰρ ὅτι, ἐὰν ᾖ ὁποσαοῦν χωρία ἑξῆς κείμενα ἐν τετραπλασίονι λόγῳ, τὸ δὲ μέγιστον ἴσον ᾖ τῷ εἰς τὸ τμᾶμα ἐγγραφομένῳ τριγώνῳ, τὰ σύμπαντα χωρία ἐλάσσονα ἐσσεῖται τοῦ τμάματος. Οὐκ ἄρα τὸ ΑΔΒΕΓ τμᾶμα ἔλασσόν ἐστι τοῦ Κ χωρίου. Ἐδείχθη δὲ ὅτι οὐδὲ μεῖζον· ἴσον ἄρα ἐστὶν τῷ Κ. Τὸ δὲ Κ χωρίον ἐπίτριτόν ἐστι τοῦ τριγώνου τοῦ ΑΒΓ· καὶ τὸ ΑΔΒΕΓ ἄρα τμᾶμα ἐπίτριτόν ἐστι τοῦ ΑΒΓ τριγώνου.