[80]
α΄. Αἰτούμεθα τὰ ἴσα βάρεα ἀπὸ ἴσων μακέων ἰσορροπεῖν, τὰ δὲ ἴσα βάρεα ἀπὸ τῶν ἀνίσων μακέων μὴ ἰσορροπεῖν, ἀλλὰ ῥέπειν ἐπὶ τὸ βάρος τὸ ἀπὸ τοῦ μείζονος μάκεος.
β΄. Εἴ κα βαρέων ἰσορροπεόντων ἀπό τινων μακέων ποτὶ τὸ ἕτερον τῶν βαρέων ποτιτεθῇ, μὴ ἰσορροπεῖν, ἀλλὰ ῥέπειν ἐπὶ τὸ βάρος ἐκεῖνο, ᾧ ποτετέθη.
γ΄. Ὁμοίως δὲ καί, εἴ κα ἀπὸ τοῦ ἑτέρου τῶν βαρέων ἀφαιρεθῇ τι, μὴ ἰσορροπεῖν, ἀλλὰ ῥέπειν ἐπὶ τὸ βάρος, ἀφ' οὗ οὐκ ἀφῃρέθη.
δ΄. Τῶν ἴσων καὶ ὁμοίων σχημάτων ἐπιπέδων ἐφαρμοζομένων ἐπ' ἄλλαλα καὶ τὰ κέντρα τῶν βαρέων ἐφαρμόζει ἐπ' ἄλλαλα.
ε΄. Τῶν δὲ ἀνίσων, ὁμοίων δέ, τὰ κέντρα τῶν βαρέων ὁμοίως ἐσσεῖται κείμενα. Ὁμοίως δὲ λέγομες σαμεῖα κέεσθαι ποτὶ τὰ ὁμοῖα σχήματα, ἀφ' ὧν ἐπὶ τὰς ἴσας γωνίας ἀγόμεναι εὐθεῖαι ποιέοντι γωνίας ἴσας ποτὶ τὰς ὁμολόγους πλευράς.
Ϛ΄. Εἴ κα μεγέθεα ἀπό τινων μακέων ἰσορροπέωντι, καὶ τὰ ἴσα αὐτοῖς ἀπὸ τῶν αὐτῶν μακέων ἰσορροπήσει.
ζ΄. Παντὸς σχήματος, οὗ κα ἁ περίμετρος ἐπὶ τὰ
[81]αὐτὰ κοῖλα ᾖ, τὸ κέντρον τοῦ βάρεος ἐντὸς εἶμεν δεῖ τοῦ σχήματος.
Τούτων δὲ ὑποκειμένων
α΄.
Τὰ ἀπὸ ἴσων μακέων ἰσορροπέοντα βάρεα ἴσα ἐντί.
Εἴπερ γὰρ ἄνισα ἐσσεῖται, ἀφαιρεθείσας ἀπὸ τοῦ μείζονος τᾶς ὑπεροχᾶς τὰ λοιπὰ οὐκ ἰσορροπησοῦντι, ἐπειδὴ ἰσορροπεόντων ἀπὸ τοῦ ἑτέρου ἀφῄρηται. Ὥστε τὰ ἀπὸ τῶν ἴσων μακέων βάρεα ἰσορροπέοντα ἴσα ἐντί.
β΄.
Τὰ ἀπὸ τῶν ἴσων μακέων ἄνισα βάρεα οὐκ ἰσορροπέοντι, ἀλλὰ ῥέψει ἐπὶ τὸ μεῖζον.
Ἀφαιρεθείσας γὰρ τᾶς ὑπεροχᾶς ἰσορροπησοῦντι, ἐπειδὴ τὰ ἴσα ἀπὸ τῶν ἴσων μακέων ἰσορροπέοντι. Ποτιτεθέντος οὖν τοῦ ἀφαιρεθέντος ῥέψει ἐπὶ τὸ μεῖζον, ἐπεὶ ἰσορροπεόντων τῷ ἑτέρῳ ποτετέθη.
γ΄.
Τὰ ἄνισα βάρεα ἀπὸ τῶν ἀνίσων μακέων ἰσορροπησοῦντι, καὶ τὸ μεῖζον ἀπὸ τοῦ ἐλάσσονος.
[82] Ἔστω ἄνισα βάρεα τὰ Α, Β, καὶ ἔστω μεῖζον τὸ Α, καὶ ἰσορροπεόντων ἀπὸ τῶν ΑΓ, ΓΒ μακέων. Δεικτέον ὅτι ἐλάσσων ἐστὶν ἁ ΑΓ τᾶς ΓΒ.
Μὴ γὰρ ἔστω ἐλάσσων. Ἀφαιρεθείσας δὴ τᾶς ὑπεροχᾶς, ᾇ ὑπερέχει τὸ Α τοῦ Β, ἐπειδὴ ἰσορροπεόντων ἀπὸ τοῦ ἑτέρου ἀφῄρηται, ῥέψει ἐπὶ τὸ Β. Οὐ ῥέψει δέ· εἴτε γὰρ ἴσα ἐστὶν ἁ ΓΑ τᾷ ΓΒ, ἰσορροπησοῦντι [τὰ γὰρ ἴσα ἀπὸ τῶν ἴσων μακέων], εἴτε μείζων ἁ ΓΑ τᾶς ΓΒ, ῥέπει ἐπὶ τὸ Α· τὰ γὰρ ἴσα ἀπὸ τῶν ἀνίσων μακέων οὐκ ἰσορροπέοντι, ἀλλὰ ῥέπει ἐπὶ τὸ ἀπὸ τοῦ μείζονος μάκεος. Διὰ δὴ ταῦτα ἐλάσσων ἐστὶν ἁ ΑΓ τᾶς ΓΒ.
Φανερὸν δὲ ὅτι καὶ τὰ ἀπὸ τῶν ἀνίσων μακέων ἰσορροπέοντα ἄνισά ἐντι, καὶ μεῖζόν ἐστι τὸ ἀπὸ τοῦ ἐλάσσονος.
δ΄.
Εἴ κα δύο ἴσα μεγέθεα μὴ τὸ αὐτὸ κέντρον τοῦ βάρεος ἔχωντι, τοῦ ἐξ ἀμφοτέρων τῶν μεγεθέων συγκειμένου μεγέθεος κέντρον ἐσσεῖται τοῦ βάρεος τὸ μέσον τᾶς εὐθείας τᾶς ἐπιζευγνυούσας τῶν μεγεθέων τὰ κέντρα τοῦ βάρεος.
Ἔστω τοῦ μὲν Α κέντρον τοῦ βάρεος τὸ Α, τοῦ δὲ Β τὸ Β, καὶ ἐπιζευχθεῖσα ἁ ΑΒ τετμάσθω δίχα κατὰ τὸ Γ· λέγω ὅτι τοῦ ἐξ ἀμφοτέρων τῶν μεγεθέων συγκειμένου μεγέθεος κέντρον ἐστὶ τὸ Γ.
[83] Εἰ γὰρ μή, ἔστω [τοῦ ἐξ ἀμφοτέρων τῶν Α, Β μεγεθῶν] κέντρον τοῦ βάρεος τὸ Δ, εἰ δυνατόν [ὅτι γὰρ ἔστιν ἐπὶ τῆς ΑΒ προδέδεικται]. Ἐπεὶ οὖν τὸ Δ σαμεῖον κέντρον ἐστὶν τοῦ βάρεος τοῦ ἐκ τῶν Α, Β συγκειμένου μεγέθεος, κατεχομένου τοῦ Δ ἰσορροπήσει· τὰ ἄρα Α, Β μεγέθεα ἰσορροπησοῦντι ἀπὸ τῶν ΑΔ, ΔΒ μακέων· ὅπερ ἀδύνατον [τὰ γὰρ ἴσα ἀπὸ τῶν ἀνίσων μακέων οὐκ ἰσορροπέοντι]. Δῆλον οὖν ὅτι τὸ Γ κέντρον ἐστὶ τοῦ βάρεος τοῦ ἐκ τῶν Α, Β συγκειμένου μεγέθεος.
ε΄.
Εἴ κα τριῶν μεγεθέων τὰ κέντρα τοῦ βάρεος ἐπ' εὐθείας ἔωντι κείμενα, καὶ τὰ μεγέθεα ἴσον βάρος ἔχωντι, καὶ αἱ μεταξὺ τῶν κέντρων εὐθεῖαι ἴσαι ἔωντι, τοῦ ἐκ πάντων τῶν μεγεθέων συγκειμένου μεγέθεος κέντρον ἐσσεῖται τοῦ βάρεος τὸ σαμεῖον, ὃ καὶ τοῦ μέσου τὸ αὐτὸ κέντρον ἐστὶ τοῦ βάρεος.
Ἔστω τρία μεγέθεα τὰ Α, Β, Γ, κέντρα δὲ αὐτῶν τοῦ βάρεος τὰ Α, Β, Γ σαμεῖα ἐπ' εὐθείας κείμενα, ἔστω δὲ τά τε Α, Β, Γ ἴσα καὶ αἱ ΑΓ, ΓΒ ἴσαι εὐθεῖαι· λέγω ὅτι τοῦ ἐκ πάντων τῶν μεγεθέων συγκειμένου μεγέθεος κέντρον τοῦ βάρεός ἐστι τὸ Γ σαμεῖον.
Ἐπεὶ γὰρ τὰ Α, Β μεγέθεα ἴσον βάρος ἔχει, κέντρον ἐσσεῖται τοῦ βάρεος τὸ Γ σαμεῖον, ἐπειδὴ ἴσαι ἐντὶ αἱ [84] ΑΓ, ΓΒ. Ἔστιν δὲ καὶ τοῦ Γ κέντρον τοῦ βάρεος τὸ Γ σαμεῖον· δῆλον οὖν ὅτι καὶ τοῦ ἐκ πάντων συγκειμένου μεγέθεος κέντρον ἐσσεῖται τοῦ βάρεος τὸ σαμεῖον, ὃ καὶ τοῦ μέσου κέντρον ἐστὶ τοῦ βάρεος.
Ἐκ δὴ τούτων φανερὸν ὅτι, ὁπόσων κα τῷ πλήθει περισσῶν μεγεθέων τὰ κέντρα τοῦ βάρεος ἐπ' εὐθείας ἔωντι κείμενα, εἴ κα τά τε ἴσον ἀπέχοντα ἀπὸ τοῦ μέσου μεγέθεα ἴσον βάρος ἔχωντι, καὶ αἱ εὐθεῖαι αἱ μεταξὺ τῶν κέντρων αὐτῶν ἴσαι ἔωντι, τοῦ ἐκ πάντων τῶν μεγεθέων συγκειμένου μεγέθεος κέντρον ἐσσεῖται τοῦ βάρεος τὸ σαμεῖον, ὃ καὶ τοῦ μέσου αὐτῶν κέντρον ἐστὶ τοῦ βάρεος.
Εἴ κα καὶ ἄρτια ἔωντι τῷ πλήθει τὰ μεγέθεα, καὶ τὰ κέντρα τοῦ βάρεος αὐτῶν ἐπ' εὐθείας ἔωντι κείμενα, καὶ τὰ μέσα αὐτῶν καὶ τὰ ἴσα ἀπέχοντα ἀπ' αὐτῶν ἴσον βάρος ἔχωντι, καὶ αἱ μεταξὺ τῶν κέντρων εὐθεῖαι ἴσαι ἔωντι, τοῦ ἐκ πάντων τῶν μεγεθέων συγκειμένου μεγέθεος κέντρον ἐσσεῖται τοῦ βάρεος τὸ μέσον τᾶς εὐθείας τᾶς ἐπιζευγνυούσας τὰ κέντρα τοῦ βάρεος τῶν μεγεθέων, ὡς ὑπογέγραπται.
[85] Ϛ΄.
Τὰ σύμμετρα μεγέθεα ἰσορροπέοντι ἀπὸ μακέων ἀντιπεπονθότως τὸν αὐτὸν λόγον ἐχόντων τοῖς βάρεσιν.
Ἔστω σύμμετρα μεγέθεα τὰ Α, Β, ὧν κέντρα τὰ Α, Β, καὶ μᾶκος ἔστω τι τὸ ΕΔ, καὶ ἔστω ὡς τὸ Α ποτὶ τὸ Β, οὕτως τὸ ΔΓ μᾶκος ποτὶ τὸ ΓΕ μᾶκος· δεικτέον ὅτι τοῦ ἐξ ἀμφοτέρων τῶν Α, Β συγκειμένου μεγέθεος κέντρον ἐστὶ τοῦ βάρεος τὸ Γ.
Ἐπεὶ γάρ ἐστιν, ὡς τὸ Α ποτὶ τὸ Β, οὕτως τὸ ΔΓ ποτὶ τὸ ΓΕ, τὸ δὲ Α τῷ Β σύμμετρον, καὶ τὸ ΓΔ ἄρα τῷ ΓΕ σύμμετρον, τουτέστιν εὐθεῖα τᾷ εὐθείᾳ· ὥστε τῶν ΕΓ, ΓΔ ἐστὶ κοινὸν μέτρον. Ἔστω δὴ τὸ Ν, καὶ κείσθω τᾷ μὲν ΕΓ ἴσα ἑκατέρα τᾶν ΔΗ, ΔΚ, τᾷ δὲ ΔΓ ἴσα ἁ ΕΛ. Καὶ ἐπεὶ ἴσα ἁ ΔΗ τᾷ ΓΕ, ἴσα καὶ ἁ ΔΓ τᾷ ΕΗ· ὥστε καὶ ἁ ΛΕ ἴσα τᾷ ΕΗ. Διπλασία ἄρα ἁ μὲν ΛΗ τᾶς ΔΓ, ἁ δὲ ΗΚ τᾶς ΓΕ· ὥστε τὸ Ν καὶ ἑκατέραν τᾶν ΛΗ, ΗΚ μετρεῖ, ἐπειδήπερ καὶ τὰ ἡμίσεα αὐτᾶν. Καὶ ἐπεί ἐστιν, ὡς τὸ Α ποτὶ τὸ Β, οὕτως ἁ ΔΓ ποτὶ ΓΕ, ὡς δὲ ἁ ΔΓ ποτὶ ΓΕ, οὕτως ἁ ΛΗ ποτὶ ΗΚ· διπλασία γὰρ ἑκατέρα ἑκατέρας· [86] καὶ ὡς ἄρα τὸ Α ποτὶ τὸ Β, οὕτως ἁ ΛΗ ποτὶ ΗΚ. Ὁσαπλασίων δέ ἐστιν ἁ ΛΗ τᾶς Ν, τοσαυταπλασίων ἔστω καὶ τὸ Α τοῦ Ζ· ἔστιν ἄρα ὡς ἁ ΛΗ ποτὶ Ν, οὕτως τὸ Α ποτὶ Ζ. Ἔστι δὲ καὶ ὡς ἁ ΚΗ ποτὶ ΛΗ, οὕτως τὸ Β ποτὶ Α· δι' ἴσου ἄρα ἐστὶν ὡς ἁ ΚΗ ποτὶ Ν, οὕτως τὸ Β ποτὶ Ζ· ἰσάκις ἄρα πολλαπλασίων ἐστὶν ἁ ΚΗ τᾶς Ν καὶ τὸ Β τοῦ Ζ. Ἐδείχθη δὲ τοῦ Ζ καὶ τὸ Α πολλαπλάσιον ἐόν· ὥστε τὸ Ζ τῶν Α, Β κοινόν ἐστι μέτρον. Διαιρεθείσας οὖν τᾶς μὲν ΛΗ εἰς τὰς τᾷ Ν ἴσας, τοῦ δὲ Α εἰς τὰ τῷ Ζ ἴσα, τὰ ἐν τᾷ ΛΗ τμάματα ἰσομεγέθεα τᾷ Ν ἴσα ἐσσεῖται τῷ πλήθει τοῖς ἐν τῷ Α τμαμάτεσσιν ἴσοις ἐοῦσιν τῷ Ζ. Ὥστε, ἂν ἐφ' ἕκαστον τῶν τμαμάτων τῶν ἐν τᾷ ΛΗ ἐπιτεθῇ μέγεθος ἴσον τῷ Ζ τὸ κέντρον τοῦ βάρεος ἔχον ἐπὶ μέσου τοῦ τμάματος, τά τε πάντα μεγέθεα ἴσα ἐντὶ τῷ Α, καὶ τοῦ ἐκ πάντων συγκειμένου κέντρον ἐσσεῖται τοῦ βάρεος τὸ Ε· ἄρτιά τε γάρ ἐστι τὰ πάντα τῷ πλήθει, καὶ τὰ ἐφ' ἑκάτερα τοῦ Ε ἴσα τῷ πλήθει διὰ τὸ ἴσαν εἶμεν τὰν ΛΕ τᾷ ΗΕ. Ὁμοίως δὲ δειχθήσεται ὅτι κἄν, εἴ κα ἐφ' ἕκαστον τῶν ἐν τᾷ ΚΗ τμαμάτων ἐπιτεθῇ μέγεθος ἴσον τῷ Ζ κέντρον τοῦ βάρεος ἔχον ἐπὶ τοῦ μέσου τοῦ τμάματος, τά τε πάντα μεγέθεα ἴσα ἐσσεῖται τῷ Β, καὶ τοῦ ἐκ πάντων συγκειμένου κέντρον τοῦ βάρεος ἐσσεῖται τὸ Δ· ἐσσεῖται οὖν τὸ μὲν Α ἐπικείμενον κατὰ τὸ Ε, τὸ δὲ Β κατὰ τὸ Δ. Ἐσσεῖται δὴ μεγέθεα ἴσα ἀλλάλοις ἐπ' εὐθείας κείμενα, ὧν τὰ κέντρα τοῦ βάρεος ἴσα ἀπ' ἀλλάλων διέστακεν, [συγκείμενα] ἄρτια τῷ πλήθει· δῆλον οὖν ὅτι τοῦ ἐκ πάντων συγκειμένου μεγέθεος κέντρον ἐστὶ τοῦ βάρεος ἁ διχοτομία τᾶς εὐθείας τᾶς [87] ἐχούσας τὰ κέντρα τῶν μέσων μεγεθέων. Ἐπεὶ δ' ἴσαι ἐντὶ ἁ μὲν ΛΕ τᾷ ΓΔ, ἁ δὲ ΕΓ τᾷ ΔΚ, καὶ ὅλα ἄρα ἁ ΛΓ ἴσα τᾷ ΓΚ· ὥστε τοῦ ἐκ πάντων μεγέθεος κέντρον τοῦ βάρεος τὸ Γ σαμεῖον. Τοῦ μὲν ἄρα Α κειμένου κατὰ τὸ Ε, τοῦ δὲ Β κατὰ τὸ Δ, ἰσορροπησοῦντι κατὰ τὸ Γ.
ζ΄.
Καὶ τοίνυν, εἴ κα ἀσύμμετρα ἔωντι τὰ μεγέθεα, ὁμοίως ἰσορροπησοῦντι ἀπὸ μακέων ἀντιπεπονθότως τὸν αὐτὸν λόγον ἐχόντων τοῖς μεγέθεσιν.
Ἔστω ἀσύμμετρα μεγέθεα τὰ ΑΒ, Γ, μάκεα δὲ τὰ ΔΕ, ΕΖ, ἐχέτω δὲ τὸ ΑΒ ποτὶ τὸ Γ τὸν αὐτὸν λόγον, ὃν καὶ τὸ ΕΔ ποτὶ τὸ ΕΖ μᾶκος· λέγω ὅτι τοῦ ἐξ ἀμφοτέρων τῶν ΑΒ, Γ κέντρον τοῦ βάρεός ἐστι τὸ Ε.
Εἰ γὰρ μὴ ἰσορροπήσει τὸ ΑΒ τεθὲν ἐπὶ τῷ Ζ τῷ Γ τεθέντι ἐπὶ τῷ Δ, ἤτοι μεῖζόν ἐστι τὸ ΑΒ τοῦ Γ ἢ ὥστε ἰσορροπεῖν [τῷ Γ] ἢ οὔ. Ἔστω μεῖζον, καὶ ἀφῃρήσθω ἀπὸ τοῦ ΑΒ ἔλασσον τᾶς ὑπεροχᾶς, ᾇ μεῖζόν ἐστι τὸ ΑΒ τοῦ Γ ἢ ὥστε ἰσορροπεῖν, ὥστε [τὸ] λοιπὸν τὸ Α σύμμετρον εἶμεν τῷ Γ. Ἐπεὶ οὖν σύμμετρά ἐστι τὰ Α, Γ μεγέθεα, [88] καὶ ἐλάσσονα λόγον ἔχει τὸ Α ποτὶ τὸ Γ ἢ ἁ ΔΕ ποτὶ ΕΖ, οὐκ ἰσορροπησοῦντι τὰ Α, Γ ἀπὸ τῶν ΔΕ, ΕΖ μακέων, τεθέντος τοῦ μὲν Α ἐπὶ τῷ Ζ, τοῦ δὲ Γ ἐπὶ τῷ Δ. Διὰ ταὐτὰ δ', οὐδ' εἰ τὸ Γ μεῖζόν ἐστιν ἢ ὥστε ἰσορροπεῖν τῷ ΑΒ.
η΄.
Εἴ κα ἀπό τινος μεγέθεος ἀφαιρεθῇ τι μέγεθος μὴ τὸ αὐτὸ κέντρον ἔχον τῷ ὅλῳ, τοῦ λοιποῦ μεγέθεος κέντρον ἐστὶ τοῦ βάρεος, ἐκβληθείσας τᾶς εὐθείας τᾶς ἐπιζευγνυούσας τὰ κέντρα τῶν βαρέων τοῦ τε ὅλου μεγέθεος καὶ τοῦ ἀφῃρημένου ἐπὶ τὰ αὐτά, ἐφ' ἃ τὸ κέντρον τοῦ ὅλου μεγέθεος, καὶ ἀπολαφθείσας τινὸς ἀπὸ [τᾶς] ἐκβληθείσας τᾶς ἐπιζευγνυούσας τὰ εἰρημένα κέντρα, ὥστε τὸν αὐτὸν ἔχειν λόγον ποτὶ τὰν μεταξὺ τῶν κέντρων, ὃν ἔχει τὸ βάρος τοῦ ἀφῃρημένου μεγέθεος ποτὶ τὸ τοῦ λοιποῦ βάρος, τὸ πέρας τᾶς ἀπολαφθείσας.
Ἔστω μεγέθεός τινος τοῦ ΑΒ κέντρον τοῦ βάρεος τὸ Γ, καὶ ἀφῃρήσθω ἀπὸ τοῦ ΑΒ τὸ ΑΔ, οὗ κέντρον τοῦ βάρεος ἔστω τὸ Ε, ἐπιζευχθείσας δὲ τᾶς ΕΓ καὶ ἐκβληθείσας ἀπολελάφθω ἁ ΓΖ ποτὶ τὰν ΓΕ λόγον ἔχουσα τὸν αὐτόν, [89] ὃν ἔχει τὸ ΑΔ μέγεθος ποτὶ τὸ ΔΗ· δεικτέον ὅτι τοῦ ΔΗ μεγέθεος κέντρον τοῦ βάρεός ἐστι τὸ Ζ σαμεῖον.
Μὴ γάρ, ἀλλ', εἰ δυνατόν, ἔστω τὸ Θ σαμεῖον. Ἐπεὶ οὖν τοῦ μὲν ΑΔ μεγέθεος κέντρον τοῦ βάρεός ἐστι τὸ Ε, τοῦ δὲ ΔΗ τὸ Θ σαμεῖον, τοῦ ἐξ ἀμφοτέρων τῶν ΑΔ, ΔΗ μεγεθέων κέντρον τοῦ βάρεος ἐσσεῖται ἐπὶ τᾶς ΕΘ τμαθείσας, ὥστε τὰ τμάματα αὐτᾶς ἀντιπεπονθέμεν κατὰ τὸν αὐτὸν λόγον τοῖς μεγέθεσιν· ὥστε οὐκ ἐσσεῖται τὸ Γ σαμεῖον κατὰ τὰν ἀνάλογον τομὰν τᾷ εἰρημένᾳ. Οὐκ ἄρα ἐστὶ τὸ Γ κέντρον τοῦ ἐκ τῶν ΑΔ, ΔΗ συγκειμένου μεγέθεος, τουτέστι τοῦ ΑΒ. Ἔστι δέ· ὑπέκειτο γάρ· οὐκ ἄρα ἐστὶ τὸ Θ κέντρον βάρεος τοῦ ΔΗ μεγέθεος.
θ΄.
Παντὸς παραλληλογράμμου τὸ κέντρον τοῦ βάρεός ἐστιν ἐπὶ τᾶς εὐθείας τᾶς ἐπιζευγνυούσας τὰς διχοτομίας τᾶν κατ' ἐναντίον τοῦ παραλληλογράμμου πλευρᾶν.
Ἔστω παραλληλόγραμμον τὸ ΑΒΓΔ, ἐπὶ δὲ τὰν διχοτομίαν τᾶν ΑΒ, ΓΔ ἁ ΕΖ· φαμὶ δὴ ὅτι τοῦ ΑΒΓΔ παραλληλογράμμου τὸ κέντρον τοῦ βάρεος ἐσσεῖται ἐπὶ τᾶς ΕΖ.
[90] Μὴ γάρ, ἀλλ', εἰ δυνατόν, ἔστω τὸ Θ, καὶ ἄχθω παρὰ τὰν ΑΒ ἁ ΘΙ. Τᾶς [δὲ] δὴ ΕΒ διχοτομουμένας αἰεὶ ἐσσεῖταί ποκα ἁ καταλειπομένα ἐλάσσων τᾶς ΙΘ· καὶ διῃρήσθω ἑκατέρα τᾶν ΑΕ, ΕΒ εἰς τὰς τᾷ ΕΚ ἴσας, καὶ ἀπὸ τῶν κατὰ τὰς διαιρέσιας σαμείων ἄχθωσαν παρὰ τὰν ΕΖ· διαιρεθήσεται δὴ τὸ ὅλον παραλληλόγραμμον εἰς παραλληλόγραμμα τὰ ἴσα καὶ ὁμοῖα τῷ ΚΖ. Τῶν οὖν παραλληλογράμμων τῶν ἴσων καὶ ὁμοίων τῷ ΚΖ ἐφαρμοζομένων ἐπ' ἄλλαλα καὶ τὰ κέντρα τοῦ βάρεος αὐτῶν ἐπ' ἄλλαλα πεσοῦνται. Ἐσσοῦνται δὴ μεγέθεά τινα, παραλληλόγραμμα ἴσα τῷ ΚΖ, ἄρτια τῷ πλήθει, καὶ τὰ κέντρα τοῦ βάρεος αὐτῶν ἐπ' εὐθείας κείμενα, καὶ τὰ μέσα ἴσα, καὶ πάντα τὰ ἐφ' ἑκάτερα τῶν μέσων αὐτά τε ἴσα ἐντὶ καὶ αἱ μεταξὺ τῶν κέντρων εὐθεῖαι ἴσαι· τοῦ ἐκ πάντων αὐτῶν ἄρα συγκειμένου μεγέθεος τὸ κέντρον ἐσσεῖται τοῦ βάρεος ἐπὶ τᾶς εὐθείας τᾶς ἐπιζευγνυούσας τὰ κέντρα τοῦ βάρεος τῶν μέσων χωρίων. Οὐκ ἔστι δέ· τὸ γὰρ Θ ἐκτός ἐστι τῶν μέσων παραλληλογράμμων. Φανερὸν οὖν ὅτι ἐπὶ τᾶς ΕΖ εὐθείας τὸ κέντρον ἐστὶ τοῦ βάρεος τοῦ ΑΒΓΔ παραλληλογράμμου.
ι΄.
Παντὸς παραλληλογράμμου τὸ κέντρον τοῦ βάρεός ἐστι τὸ σαμεῖον, καθ' ὃ αἱ διάμετροι συμπίπτοντι.
[91] Ἔστω παραλληλόγραμμον τὸ ΑΒΓΔ καὶ ἐν αὐτῷ ἁ ΕΖ δίχα τέμνουσα τὰς ΑΒ, ΓΔ, ἁ δὲ ΚΛ τὰς ΑΓ, ΒΔ· ἔστιν δὴ τοῦ ΑΒΓΔ παραλληλογράμμου τὸ κέντρον τοῦ βάρεος ἐπὶ τᾶς ΕΖ· δέδεικται γὰρ τοῦτο· διὰ ταὐτὰ δὲ καὶ ἐπὶ τᾶς ΚΛ· τὸ Θ ἄρα σαμεῖον κέντρον τοῦ βάρεος. Κατὰ δὲ τὸ Θ αἱ διάμετροι τοῦ παραλληλογράμμου συμπίπτοντι· ὥστε δέδεικται τὸ προτεθέν.
Ἔστιν δὲ καὶ ἄλλως τὸ αὐτὸ δεῖξαι.
Ἔστω παραλληλόγραμμον τὸ ΑΒΓΔ, διάμετρος δὲ αὐτοῦ ἔστω ἁ ΔΒ. Τὰ ἄρα ΑΒΔ, ΒΔΓ τρίγωνα ἴσα ἐντὶ καὶ ὁμοῖα ἀλλάλοις· ὥστε ἐφαρμοζομένων ἐπ' ἄλλαλα τῶν τριγώνων καὶ τὰ κέντρα τοῦ βάρεος αὐτῶν ἐπ' ἄλλαλα πεσοῦνται. Ἔστω δὴ τοῦ ΑΒΔ τριγώνου κέντρον τοῦ βάρεος τὸ Ε σαμεῖον, καὶ τετμάσθω δίχα ἁ ΔΒ κατὰ τὸ Θ, καὶ ἐπεζεύχθω ἁ ΕΘ καὶ ἐκβεβλήσθω, καὶ ἀπολελάφθω ἁ ΖΘ ἴσα τᾷ ΘΕ. Ἐφαρμοζομένου δὴ τοῦ ΑΒΔ τριγώνου ἐπὶ τὸ ΒΔΓ τρίγωνον καὶ τιθεμένας τᾶς μὲν ΑΒ πλευρᾶς ἐπὶ τὰν ΔΓ, τᾶς δὲ ΑΔ ἐπὶ τὰν ΒΓ, ἐφαρμόξει καὶ ἁ ΘΕ εὐθεῖα ἐπὶ τὰν ΖΘ, καὶ τὸ Ε σαμεῖον ἐπὶ τὸ Ζ πεσεῖται. [92] Ἀλλὰ καὶ ἐπὶ τὸ κέντρον τοῦ βάρεος τοῦ ΒΔΓ τριγώνου. Ἐπεὶ οὖν τοῦ μὲν ΑΒΔ τριγώνου κέντρον τοῦ βάρεος τὸ Ε σαμεῖον, τοῦ δὲ ΔΒΓ τὸ Ζ, δῆλον ὡς τοῦ ἐξ ἀμφοτέρων τῶν τριγώνων συγκειμένου μεγέθεος κέντρον τοῦ βάρεός ἐστι τὸ μέσον τᾶς ΕΖ εὐθείας, ὅπερ ἐστὶ τὸ Θ σαμεῖον.
ια΄.
Ἐὰν δύο τρίγωνα ὁμοῖα ἀλλάλοις ᾖ καὶ ἐν αὐτοῖς σαμεῖα ὁμοίως κείμενα ποτὶ τὰ τρίγωνα, καὶ τὸ ἓν σαμεῖον τοῦ ἐν ᾧ ἐστι τριγώνου κέντρον ᾖ τοῦ βάρεος, καὶ τὸ λοιπὸν σαμεῖον κέντρον ἐστὶ τοῦ βάρεος τοῦ ἐν ᾧ ἐστι τριγώνου [ὁμοίως δὲ λέγομεν σαμεῖα κέεσθαι ποτὶ τὰ ὁμοῖα σχήματα, ἀφ' ὧν αἱ ἐπὶ τὰς ἴσας γωνίας ἀγόμεναι εὐθεῖαι ἴσας ποιοῦσιν γωνίας πρὸς ταῖς ὁμολόγοις πλευραῖς].
Ἔστω δύο τρίγωνα τὰ ΑΒΓ, ΔΕΖ, καὶ ἔστω ὡς ἁ ΑΓ ποτὶ ΔΖ, οὕτως ἅ τε ΑΒ ποτὶ ΔΕ καὶ ἁ ΒΓ ποτὶ ΕΖ, καὶ ἐν τοῖς εἰρημένοις τριγώνοις σαμεῖα ὁμοίως κείμενα ἔστω τὰ Θ, Ν [πρὸς τὰ ΑΒΓ, ΔΕΖ τρίγωνα], καὶ ἔστω τὸ Θ κέντρον τοῦ βάρεος τοῦ ΑΒΓ τριγώνου· λέγω ὅτι καὶ τὸ Ν κέντρον βάρεός ἐστι τοῦ ΔΕΖ τριγώνου.
[93] Μὴ γάρ, ἀλλ', εἰ δυνατόν, ἔστω τὸ Η κέντρον βάρεος τοῦ ΔΕΖ τριγώνου, καὶ ἐπεζεύχθωσαν αἱ ΘΑ, ΘΒ, ΘΓ, ΔΝ, ΕΝ, ΖΝ, ΔΗ, ΕΗ, ΖΗ. Ἐπεὶ οὖν ὁμοῖόν ἐστι τὸ ΑΒΓ τρίγωνον τῷ ΔΕΖ τριγώνῳ, καὶ κέντρα τῶν βαρέων ἐστὶ τὰ Θ, Η σαμεῖα, τῶν δὲ ὁμοίων σχημάτων τὰ κέντρα τῶν βαρέων ὁμοίως ἐντὶ κείμενα [ὥστε ἴσας ποιησοῦντι γωνίας ποτὶ ταῖς ὁμολόγοις πλευραῖς ἕκαστον ἑκάσταις], ἴσα ἄρα ἁ ὑπὸ ΗΔΕ γωνία τᾷ ὑπὸ ΘΑΒ. Ἀλλὰ ἁ ὑπὸ ΘΑΒ γωνία ἴσα ἐστὶ τᾷ ὑπὸ ΕΔΝ [διὰ τὸ ὁμοίως κεῖσθαι τὰ Θ, Ν σαμεῖα]· καὶ ἁ ὑπὸ ΕΔΝ γωνία ἄρα ἴσα ἐστὶ τᾷ ὑπὸ ΕΔΗ, ἁ μείζων τᾷ ἐλάσσονι· ὅπερ ἀδύνατον. Οὐκ ἄρα οὐκ ἔστι κέντρον τοῦ βάρεος τοῦ ΔΕΖ τριγώνου τὸ Ν σαμεῖον· ἔστιν ἄρα.
ιβ΄.
Εἴ κα δύο τρίγωνα ὁμοῖα ἔωντι, τοῦ δὲ ἑνὸς τριγώνου κέντρον ᾖ τοῦ βάρεος ἐπὶ τᾶς εὐθείας, ἅ ἐντι ἀπό τινος γωνίας ἐπὶ μέσαν τὰν βάσιν ἀγομένα, καὶ τοῦ λοιποῦ τριγώνου τὸ κέντρον ἐσσεῖται τοῦ βάρεος ἐπὶ τᾶς ὁμοίως ἀγομένας γραμμᾶς.
[94] Ἔστω δύο τρίγωνα τὰ ΑΒΓ, ΔΕΖ, καὶ ἔστω ὡς ἁ ΑΓ ποτὶ ΔΖ, οὕτως ἅ τε ΑΒ ποτὶ ΔΕ καὶ ἁ ΒΓ ποτὶ ΖΕ, καὶ τμαθείσας τᾶς ΑΓ δίχα κατὰ τὸ Η ἐπεζεύχθω ἁ ΒΗ, καὶ ἔστω τὸ κέντρον τοῦ βάρεος τοῦ ΑΒΓ τριγώνου ἐπὶ τᾶς ΒΗ τὸ Θ· λέγω ὅτι καὶ τοῦ ΕΔΖ τριγώνου τὸ κέντρον τοῦ βάρεός ἐστιν ἐπὶ τᾶς ὁμοίως ἀγομένας εὐθείας.
Τετμάσθω ἁ ΔΖ δίχα κατὰ τὸ Μ, καὶ ἐπεζεύχθω ἁ ΕΜ, καὶ πεποιήσθω ὡς ἁ ΒΗ ποτὶ ΒΘ, οὕτως ἁ ΜΕ ποτὶ ΕΝ, καὶ ἐπεζεύχθωσαν αἱ ΑΘ, ΘΓ, ΔΝ, ΝΖ. Ἐπεί ἐστι τᾶς μὲν ΓΑ ἡμίσεια ἁ ΑΗ, τᾶς δὲ ΔΖ ἡμίσεια ἁ ΔΜ, ἔστιν ἄρα καὶ ὡς ἁ ΒΑ ποτὶ ΕΔ, οὕτως ἁ ΑΗ ποτὶ ΔΜ. Καὶ περὶ ἴσας γωνίας αἱ πλευραὶ ἀνάλογόν ἐντι· ἴσα τε ἄρα ἐστὶν ἁ ὑπὸ ΑΗΒ γωνία τᾷ ὑπὸ ΔΜΕ, καί ἐστιν ὡς ἁ ΑΗ ποτὶ ΔΜ, οὕτως ἁ ΒΗ ποτὶ ΕΜ. Ἔστιν δὲ καὶ ὡς ἁ ΒΗ ποτὶ ΒΘ, οὕτως ἁ ΜΕ ποτὶ ΕΝ· καὶ δι' ἴσου ἄρα ἐστὶν ὡς ἁ ΑΒ ποτὶ ΔΕ, οὕτως ἁ ΒΘ ποτὶ ΕΝ. Καὶ περὶ ἴσας γωνίας αἱ πλευραὶ ἀνάλογόν ἐντι· εἰ δὲ τοῦτο, ἴσα ἐστὶν ἁ ὑπὸ ΒΑΘ γωνία τᾷ ὑπὸ ΕΔΝ· ὥστε καὶ λοιπὰ ἁ ὑπὸ ΘΑΓ γωνία ἴσα ἐστὶ τᾷ ὑπὸ ΝΔΖ γωνίᾳ. Διὰ τὰ αὐτὰ δὲ ἁ μὲν ὑπὸ ΒΓΘ γωνία ἴσα ἐστὶ τᾷ ὑπὸ ΕΖΝ, ἁ δὲ ὑπὸ ΘΓΗ τᾷ ὑπὸ ΝΖΜ ἴσα. Ἐδείχθη δὲ καὶ ἁ ὑπὸ ΑΒΘ τᾷ ὑπὸ ΔΕΜ ἴσα· ὥστε καὶ λοιπὰ ἁ ὑπὸ ΘΒΓ γωνία ἴσα ἐστὶ τᾷ ὑπὸ ΝΕΖ. Διὰ ταῦτα δὴ πάντα ὁμοίως κεῖται τὰ Θ, Ν σαμεῖα [ποτὶ τὰς ὁμολόγους πλευρὰς ἴσας γωνίας ποιεῖ]. Ἐπεὶ οὖν ὁμοίως κεῖται τὰ Θ, Ν σαμεῖα, καί ἐστι τὸ Θ κέντρον τοῦ βάρεος τοῦ ΑΒΓ τριγώνου, καὶ τὸ Ν ἄρα κέντρον βάρεος τοῦ ΔΕΖ.
[95] ιγ΄.
Παντὸς τριγώνου τὸ κέντρον ἐστὶ τοῦ βάρεος ἐπὶ τᾶς εὐθείας, ἅ ἐστιν ἐκ τᾶς γωνίας ἐπὶ μέσαν ἀγομένα τὰν βάσιν.
Ἔστω τρίγωνον τὸ ΑΒΓ καὶ ἐν αὐτῷ ἁ ΑΔ ἐπὶ μέσαν τὰν ΒΓ βάσιν· δεικτέον ὅτι ἐπὶ τᾶς ΑΔ τὸ κέντρον ἐστὶ τοῦ βάρεος τοῦ ΑΒΓ.
Μὴ γάρ, ἀλλ', εἰ δυνατόν, ἔστω τὸ Θ, καὶ δι' αὐτοῦ παρὰ τὰν ΒΓ ἄχθω ἁ ΘΙ. Ἀεὶ δὴ δίχα τεμνομένας τᾶς ΔΓ ἐσσεῖταί ποκα ἁ καταλειπομένα ἐλάσσων τᾶς ΘΙ· καὶ διῃρήσθω ἑκατέρα τᾶν ΒΔ, ΔΓ ἐς τὰς ἴσας, καὶ διὰ τᾶν τομᾶν παρὰ τὰν ΑΔ ἄχθωσαν, καὶ ἐπεζεύχθωσαν αἱ ΕΖ, ΗΚ, ΛΜ· ἐσσοῦνται δὴ αὗται παρὰ τὰν ΒΓ. Τοῦ δὴ παραλληλογράμμου τοῦ μὲν ΜΝ τὸ κέντρον ἐστὶ τοῦ βάρεος ἐπὶ τᾶς ΥΣ, τοῦ δὲ ΚΞ τὸ κέντρον τοῦ βάρεος ἐπὶ τᾶς ΤΥ, τοῦ δὲ ΖΟ ἐπὶ τᾶς ΤΔ· τοῦ ἄρα ἐκ πάντων συγκειμένου μεγέθεος τὸ κέντρον τοῦ βάρεός ἐστιν ἐπὶ [96] τᾶς ΣΔ εὐθείας. Ἔστω δὴ τὸ Ρ, καὶ ἐπεζεύχθω ἁ ΡΘ καὶ ἐκβεβλήσθω, καὶ ἄχθω παρὰ τὰν ΑΔ ἁ ΓΦ. Τὸ δὴ ΑΔΓ [τρίγωνον] ποτὶ πάντα τὰ τρίγωνα τὰ ἀπὸ τᾶν ΑΜ, ΜΚ, ΚΖ, ΖΓ ἀναγεγραμμένα ὁμοῖα τῷ ΑΔΓ τοῦτον ἔχει τὸν λόγον, ὃν ἔχει ἁ ΓΑ ποτὶ ΑΜ, διὰ τὸ ἴσας εἶμεν τὰς ΑΜ, ΜΚ, ΖΓ, ΚΖ. Ἐπεὶ δὲ καὶ τὸ ΑΔΒ τρίγωνον ποτὶ πάντα τὰ ἀπὸ τᾶν ΑΛ, ΛΗ, ΗΕ, ΕΒ ἀναγεγραμμένα ὁμοῖα τρίγωνα τὸν αὐτὸν ἔχει λόγον, ὃν ἁ ΒΑ ποτὶ ΑΛ, τὸ ἄρα ΑΒΓ τρίγωνον ποτὶ πάντα τὰ εἰρημένα τρίγωνα τοῦτον ἔχει τὸν λόγον, ὃν ἔχει ἁ ΓΑ ποτὶ ΑΜ. Ἀλλὰ ἁ ΓΑ ποτὶ ΑΜ μείζονα λόγον ἔχει ἤπερ ἁ ΦΡ ποτὶ ΡΘ· ὁ γὰρ τᾶς ΓΑ ποτὶ ΑΜ λόγος ὁ αὐτός ἐστι τῷ [ὅλας] τᾶς ΦΡ ποτὶ ΡΠ [διὰ τὸ ὁμοῖα εἶμεν τὰ τρίγωνα]· καὶ τὸ ΑΒΓ ἄρα τρίγωνον ποτὶ τὰ εἰρημένα μείζονα λόγον ἔχει ἤπερ ἁ ΦΡ ποτὶ ΡΘ· ὥστε καὶ διελόντι τὰ ΜΝ, ΚΞ, ΖΟ παραλληλόγραμμα ποτὶ τὰ καταλειπόμενα τρίγωνα μείζονα λόγον ἔχει ἤπερ ἁ ΦΘ ποτὶ ΘΡ. Γεγονέτω οὖν ἐν τῷ τῶν παραλληλογράμμων ποτὶ τὰ τρίγωνα λόγῳ ἁ ΧΘ ποτὶ ΘΡ. Ἐπεὶ οὖν ἔστι τι μέγεθος τὸ ΑΒΓ, οὗ τὸ κέντρον τοῦ βάρεός ἐστι τὸ Θ, καὶ ἀφῄρηται ἀπ' αὐτοῦ μέγεθος τὸ συγκείμενον ἐκ τῶν ΜΝ, ΚΞ, ΖΟ παραλληλογράμμων, καί ἐστιν τοῦ ἀφῃρημένου μεγέθεος κέντρον τοῦ βάρεος τὸ Ρ σαμεῖον, τοῦ ἄρα λοιποῦ μεγέθεος τοῦ συγκειμένου ἐκ τῶν περιλειπομένων τριγώνων κέντρον τοῦ βάρεός ἐστιν ἐπὶ τᾶς ΡΘ εὐθείας ἐκβληθείσας καὶ ἀπολαφθείσας ποτὶ τὰν ΘΡ τοῦτον ἐχούσας τὸν λόγον, ὃν ἔχει τὸ ἀφαιρεθὲν μέγεθος ποτὶ τὸ λοιπόν. Τὸ ἄρα Χ σαμεῖον κέντρον ἐστὶ τοῦ βάρεος τοῦ συγκειμένου μεγέθεος ἐκ [97] τῶν περιλειπομένων· ὅπερ ἀδύνατον· τᾶς γὰρ διὰ τοῦ Χ εὐθείας παρὰ τὰν ΑΔ ἀγομένας ἐν τῷ ἐπιπέδῳ ἐπὶ ταὐτὰ πάντα ἐντί [τουτέστιν ἐπὶ θάτερον μέρος]. Δῆλον οὖν τὸ προτεθέν.
Ἔστω τρίγωνον τὸ ΑΒΓ, καὶ ἄχθω ἁ ΑΔ ἐπὶ μέσαν τὰν ΒΓ· λέγω ὅτι ἐπὶ τᾶς ΑΔ τὸ κέντρον ἐστὶ τοῦ βάρεος τοῦ ΑΒΓ τριγώνου.
Μὴ γάρ, ἀλλ', εἰ δυνατόν, ἔστω τὸ Θ, καὶ ἐπεζεύχθωσαν αἵ τε ΑΘ, ΘΒ, ΘΓ καὶ αἱ ΕΔ, ΖΕ ἐπὶ μέσας τὰς ΒΑ, ΑΓ, καὶ παρὰ τὰν ΑΘ ἄχθωσαν αἱ ΕΚ, ΖΛ, καὶ ἐπεζεύχθωσαν αἱ ΚΛ, ΛΔ, ΔΚ, ΔΘ, ΜΝ. Ἐπεὶ ὁμοῖόν ἐστι τὸ ΑΒΓ τρίγωνον τῷ ΔΖΓ τριγώνῳ διὰ τὸ παράλληλον εἶμεν τὰν ΒΑ τᾷ ΖΔ, καί ἐστι τοῦ ΑΒΓ τριγώνου κέντρον τοῦ βάρεος τὸ Θ σαμεῖον, καὶ τοῦ ΖΔΓ ἄρα τριγώνου κέντρον τοῦ βάρεός ἐστι τὸ Λ σαμεῖον· ὁμοίως γάρ ἐντι κείμενα τὰ Θ, Λ σαμεῖα ἐν ἑκατέρῳ τῶν τριγώνων [ἐπειδήπερ ποτὶ τὰς ὁμολόγους πλευρὰς ἴσας ποιέοντι γωνίας· φανερὸν γὰρ τοῦτο]. Διὰ τὰ αὐτὰ δὴ καὶ τοῦ ΕΒΔ κέντρον τοῦ [98] βάρεός ἐστι τὸ Κ σαμεῖον· ὥστε τοῦ ἐξ ἀμφοτέρων τῶν ΕΒΔ, ΖΔΓ τριγώνων συγκειμένου μεγέθεος κέντρον τοῦ βάρεός ἐστιν ἐπὶ μέσας τᾶς ΚΛ εὐθείας [ἐπειδήπερ ἴσα ἐντὶ τὰ ΕΒΔ, ΖΔΓ τρίγωνα]. Καί ἐστιν τᾶς ΚΛ μέσον τὸ Ν, ἐπεί ἐστιν ὡς ἁ ΒΕ ποτὶ ΕΑ, οὕτως ἁ ΒΚ ποτὶ ΘΚ, ὡς δὲ ἁ ΓΖ ποτὶ ΖΑ, οὕτως ἁ ΓΛ ποτὶ ΛΘ· εἰ δὲ τοῦτο, ἔστιν ἁ ΒΓ τᾷ ΚΛ παράλληλος. Καὶ ἐπέζευκται ἁ ΔΘ· ἔστιν ἄρα ὡς ἁ ΒΔ ποτὶ ΔΓ, οὕτως ἁ ΚΝ ποτὶ τὰν ΝΛ· ὥστε τοῦ ἐξ ἀμφοτέρων τῶν εἰρημένων τριγώνων συγκειμένου μεγέθεος κέντρον ἐστὶ τὸ Ν. Ἔστιν δὲ καὶ τοῦ ΑΕΔΖ παραλληλογράμμου κέντρον τοῦ βάρεος τὸ Μ σαμεῖον· ὥστε τοῦ ἐκ πάντων συγκειμένου μεγέθεος τὸ κέντρον τοῦ βάρεός ἐστιν ἐπὶ τᾶς ΜΝ εὐθείας. Ἔστιν δὲ καὶ τοῦ ΑΒΓ κέντρον τοῦ βάρεος τὸ Θ σαμεῖον· ἁ ΜΝ ἄρα ἐκβαλλομένα πορεύεται διὰ τοῦ Θ σαμείου· ὅπερ ἀδύνατον. Οὐκ ἄρα τὸ κέντρον τοῦ βάρεος τοῦ ΑΒΓ τριγώνου οὐκ ἔστιν ἐπὶ τᾶς ΑΔ εὐθείας· ἔστιν ἄρα ἐπ' αὐτᾶς.
ιδ΄
Παντὸς τριγώνου κέντρον ἐστὶ τοῦ βάρεος τὸ σαμεῖον, καθ' ὃ συμπίπτοντι τοῦ τριγώνου αἱ ἐκ τᾶν γωνιᾶν ἐπὶ μέσας τὰς πλευρὰς ἀγόμεναι εὐθεῖαι.
[99] Ἔστω τρίγωνον τὸ ΑΒΓ, καὶ ἄχθω ἁ μὲν ΑΔ ἐπὶ μέσαν τὰν ΒΓ, ἁ δὲ ΒΕ ἐπὶ μέσαν τὰν ΑΓ· ἐσσεῖται δὴ τοῦ ΑΒΓ τριγώνου κέντρον τοῦ βάρεος ἐφ' ἑκατέρας τᾶν ΑΔ, ΒΕ· δέδεικται γὰρ τοῦτο. Ὥστε τὸ Θ σαμεῖον κέντρον τοῦ βάρεός ἐστιν.
ιε΄.
Παντὸς τραπεζίου τὰς δύο πλευρὰς ἔχοντος παραλλήλους ἀλλάλαις τὸ κέντρον ἐστὶ τοῦ βάρεος ἐπὶ τᾶς εὐθείας τᾶς ἐπιζευγνυούσας τὰς διχοτομίας τᾶν παραλλήλων διαιρεθείσας, ὥστε τὸ τμᾶμα αὐτᾶς τὸ πέρας ἔχον τὰν διχοτομίαν τᾶς ἐλάσσονος τᾶν παραλλήλων ποτὶ τὸ λοιπὸν τμᾶμα τοῦτον ἔχειν τὸν λόγον, ὃν ἔχει συναμφότερος ἁ ἴσα τᾷ διπλασίᾳ τᾶς μείζονος μετὰ τᾶς ἐλάσσονος ποτὶ τὰν διπλασίαν τᾶς ἐλάσσονος μετὰ τᾶς μείζονος τᾶν παραλλήλων.
Ἔστω τραπέζιον τὸ ΑΒΓΔ παραλλήλους ἔχον τὰς ΑΔ, ΒΓ, ἁ δὲ ΕΖ ἐπιζευγνυέτω τὰς διχοτομίας τᾶν ΑΔ, ΒΓ. Ὅτι οὖν ἐπὶ τᾶς ΕΖ ἐστὶ τὸ κέντρον τοῦ τραπεζίου [100] φανερόν. Ἐὰν γὰρ ἐκβάλῃς τὰς ΓΔΗ, ΖΕΗ, ΒΑΗ, δῆλον ὅτι ἐπὶ τὸ αὐτὸ σαμεῖον ἔρχονται, καὶ ἐσσεῖται τοῦ ΗΒΓ τριγώνου τὸ κέντρον τοῦ βάρεος ἐπὶ τᾶς ΗΖ, καὶ ὁμοίως τοῦ ΑΗΔ τριγώνου τὸ κέντρον τοῦ βάρεος ἐπὶ τᾶς ΕΗ· καὶ λοιποῦ ἄρα τοῦ ΑΒΓΔ τραπεζίου κέντρον τοῦ βάρεος ἐσσεῖται ἐπὶ τᾶς ΕΖ. Ἐπιζευχθεῖσα δὲ ἁ ΒΔ διῃρήσθω εἰς τρία ἴσα κατὰ τὰ Κ, Θ σαμεῖα, καὶ δι' αὐτῶν παρὰ τὰν ΒΓ ἄχθωσαν αἱ ΛΘΜ, ΝΚΤ, καὶ ἐπεζεύχθωσαν αἱ ΔΖ, ΒΕ, ΟΞ· ἐσσεῖται δὴ τοῦ μὲν ΔΒΓ τριγώνου κέντρον τοῦ βάρεος ἐπὶ τᾶς ΘΜ, ἐπειδήπερ τρίτον μέρος ἁ ΘΒ τᾶς ΒΔ [καὶ διὰ τοῦ Θ σαμείου παράλληλος τᾷ βάσει ἆκται ἁ ΜΘ]. Ἔστιν δὲ τὸ κέντρον τοῦ βάρεος τοῦ ΔΒΓ τριγώνου καὶ ἐπὶ τᾶς ΔΖ· ὥστε τὸ Ξ κέντρον τοῦ βάρεος τοῦ εἰρημένου τριγώνου. Διὰ ταὐτὰ δὲ καὶ τὸ Ο σαμεῖον κέντρον ἐστὶ τοῦ βάρεος τοῦ ΑΒΔ τριγώνου· τοῦ ἄρα ἐξ ἀμφοτέρων τῶν ΑΒΔ, ΒΔΓ τριγώνων συγκειμένου μεγέθεος, ὅπερ ἐστὶ τὸ τραπέζιον, κέντρον τοῦ βάρεος ἐπὶ τᾶς ΟΞ εὐθείας. Ἔστιν δὲ τοῦ εἰρημένου τραπεζίου κέντρον τοῦ βάρεος καὶ ἐπὶ τᾶς ΕΖ· ὥστε τοῦ ΑΒΓΔ τραπεζίου κέντρον ἐστὶ τοῦ βάρεος τὸ Π σαμεῖον. Ἔχοι δ' ἂν τὸ ΒΔΓ τρίγωνον ποτὶ τὸ ΑΒΔ λόγον, ὃν ἁ ΟΠ ποτὶ ΠΞ. Ἀλλ' ὡς τὸ ΒΔΓ τρίγωνον ποτὶ τὸ ΑΒΔ τρίγωνον, οὕτως ἐντὶ ἁ ΒΓ ποτὶ ΑΔ, ὡς δὲ ἁ ΟΠ ποτὶ ΠΞ, οὕτως ἁ ΡΠ ποτὶ ΠΣ· καὶ ὡς ἄρα ἁ ΒΓ ποτὶ ΑΔ, οὕτως ἁ ΡΠ ποτὶ ΠΣ· ὥστε καὶ ὡς δύο αἱ ΒΓ μετὰ τᾶς ΑΔ ποτὶ δύο τὰς ΑΔ μετὰ τᾶς ΒΓ, οὕτως δύο αἱ ΡΠ μετὰ τᾶς ΠΣ ποτὶ δύο τὰς ΠΣ μετὰ τᾶς ΠΡ. Ἀλλὰ δύο μὲν αἱ ΡΠ μετὰ τᾶς ΠΣ συναμφότερός ἐστιν ἁ ΣΡΠ, τουτέστιν ἁ ΠΕ, δύο δὲ αἱ ΠΣ μετὰ τᾶς ΠΡ συναμφότερός ἐστιν ἁ ΡΣΠ, τουτέστιν ἁ ΠΖ· δέδεικται ἄρα τὰ προτεθέντα. [101]
α΄.
Εἴ κα δύο χωρία περιεχόμενα ὑπό τε εὐθείας καὶ ὀρθογωνίου κώνου τομᾶς, ἃ δυνάμεθα παρὰ τὰν δοθεῖσαν εὐθεῖαν παραβαλεῖν, μὴ τὸ αὐτὸ κέντρον τοῦ βάρεος ἔχωντι, τοῦ ἐξ ἀμφοτέρων αὐτῶν συγκειμένου μεγέθεος τὸ κέντρον τοῦ βάρεος ἐσσεῖται ἐπὶ τᾶς εὐθείας τᾶς ἐπιζευγνυούσας τὰ κέντρα τοῦ βάρεος αὐτῶν διαιρέον οὕτως τὰν εἰρημέναν εὐθεῖαν, ὥστε τὰ τμάματα αὐτᾶς ἀντιπεπονθότως τὸν αὐτὸν λόγον ἔχειν τοῖς χωρίοις.
Ἔστω δύο χωρία τὰ ΑΒ, ΓΔ, οἷα εἴρηται, κέντρα δὲ αὐτῶν τοῦ βάρεος ἔστω τὰ Ε, Ζ σαμεῖα, καὶ ὃν ἔχει λόγον τὸ ΑΒ ποτὶ τὸ ΓΔ, τοῦτον ἐχέτω ἁ ΖΘ ποτὶ ΘΕ. Δεικτέον ὅτι τοῦ ἐξ ἀμφοτέρων τῶν ΑΒ, ΓΔ χωρίων συγκειμένου μεγέθεος κέντρον τοῦ βάρεός ἐστι τὸ Θ σαμεῖον.
Ἔστω δὴ τᾷ μὲν ΕΘ ἑκατέρα ἴσα τᾶν ΖΗ, ΖΚ, τᾷ δὲ
[102]ΖΘ, τουτέστι τᾷ ΗΕ, ἴσα ἁ ΕΛ· ἐσσεῖται ἄρα καὶ ἁ ΛΘ τᾷ ΚΘ ἴσα, καὶ ἔτι ὡς ἁ ΛΗ ποτὶ ΗΚ, οὕτως τὸ ΑΒ ποτὶ ΓΔ· διπλασία γὰρ ἑκατέρα ἑκατέρας. Παραβεβλήσθω δὴ παρὰ τὰν ΛΗ τὸ χωρίον τοῦ ΑΒ ἐφ' ἑκάτερα τᾶς ΛΗ, ὥστε εἶμεν τὸ ΜΝ ἴσον τῷ ΑΒ· ἐσσεῖται δὴ τοῦ ΜΝ κέντρον τοῦ βάρεος τὸ Ε σαμεῖον. Συμπεπληρώσθω δὴ τὸ ΝΞ, ἕξει δὲ τὸ ΜΝ ποτὶ τὸ ΝΞ λόγον, ὃν ἁ ΛΗ ποτὶ ΗΚ. Ἔχει δὲ καὶ τὸ ΑΒ ποτὶ τὸ ΓΔ τὸν τᾶς ΛΗ ποτὶ ΗΚ λόγον· καὶ ὡς ἄρα τὸ ΑΒ ποτὶ ΓΔ, οὕτως τὸ ΜΝ ποτὶ ΝΞ. Καὶ ἐναλλάξ· ἴσον δὲ τὸ ΑΒ τῷ ΜΝ· ἴσον ἄρα καὶ τὸ ΓΔ τῷ ΝΞ, καὶ κέντρον ἐστὶν αὐτοῦ τοῦ βάρεος τὸ Ζ σαμεῖον. Καὶ ἐπεὶ ἴσα ἐστὶν ἁ ΛΘ τᾷ ΘΚ, καὶ ὅλα ἁ ΛΚ τὰς ἀπεναντίον πλευρὰς δίχα τέμνει, [τοῦ] ὅλου τοῦ ΠΜ κέντρον τοῦ βάρεός ἐστι τὸ Θ σαμεῖον. Ἀλλὰ τὸ ΜΠ ἴσον τῷ ἐξ ἀμφοτέρων τῶν ΜΝ, ΝΞ· ὥστε καὶ τοῦ ἐξ ἀμφοτέρων τῶν ΑΒ, ΓΔ κέντρον ἐστὶ τοῦ βάρεος τὸ Θ σαμεῖον.
β΄.
Εἴ κα εἰς τμᾶμα περιεχόμενον ὑπὸ εὐθείας καὶ ὀρθογωνίου κώνου τομᾶς τρίγωνον ἐγγραφῇ τὰν αὐτὰν βάσιν ἔχον τῷ τμάματι καὶ ὕψος ἴσον, καὶ πάλιν εἰς τὰ παραλειπόμενα τμάματα τρίγωνα ἐγγραφέωντι τὰς αὐτὰς βάσιας ἔχοντα τοῖς τμαμάτεσσιν καὶ ὕψος ἴσον, καὶ ἀεὶ εἰς τὰ παραλειπόμενα τμάματα τρίγωνα ἐγγραφέωντι τὸν αὐτὸν τρόπον, τὸ γενόμενον σχῆμα ἐν τῷ τμάματι γνωρίμως ἐγγράφεσθαι [103] λεγέσθω. Φανερὸν δὲ ὅτι τοῦ οὕτως ἐγγραφέντος σχήματος αἱ τὰς γωνίας ἐπιζευγνύουσαι τάς τε ἔγγιστα ἀπὸ τᾶς κορυφᾶς τοῦ τμάματος καὶ τὰς ἑξῆς παρὰ τὰν βάσιν ἐσσοῦνται τοῦ τμάματος καὶ δίχα τμαθήσονται ὑπὸ τᾶς τοῦ τμάματος διαμέτρου καὶ τὰν διάμετρον τεμοῦντι εἰς τοὺς τῶν ἑξῆς περισσῶν ἀριθμῶν λόγους ἑνὸς λεγομένου ποτὶ τᾷ κορυφᾷ τοῦ τμάματος. Ταῦτα δὲ δεικτέον ἐν ταῖς τάξεσιν.
Εἰ δέ κα εἰς τμᾶμα περιεχόμενον ὑπὸ εὐθείας τε καὶ ὀρθογωνίου κώνου τομᾶς εὐθύγραμμον γνωρίμως ἐγγραφῇ, τοῦ ἐγγραφέντος κέντρον τοῦ βάρεος ἐσσεῖται ἐπὶ τᾶς τοῦ τμάματος διαμέτρου.
Ἔστω τμᾶμα τὸ ΑΒΓ οἷον εἴρηται, καὶ ἐγγεγράφθω εἰς αὐτὸ εὐθύγραμμον γνωρίμως τὸ ΑΕΖΗΒΘΙΚΓ. Δεικτέον ὅτι τὸ κέντρον τοῦ βάρεος τοῦ εὐθυγράμμου ἐστὶν ἐπὶ τᾶς ΒΔ.
Ἐπεὶ γὰρ τοῦ μὲν ΑΕΚΓ τραπεζίου τὸ κέντρον τοῦ βάρεος ἐπὶ τᾶς ΛΔ ἐστί, τοῦ δὲ ΕΖΙΚ τραπεζίου τὸ κέντρον [104] ἐπὶ τᾶς ΜΛ, τοῦ δὲ ΖΗΘΙ τραπεζίου τὸ κέντρον ἐπὶ τᾶς ΜΝ, ἔτι δὲ καὶ τοῦ ΗΒΘ τριγώνου τὸ κέντρον τοῦ βάρεος ἐπὶ τᾶς ΒΝ, δῆλον ὅτι καὶ τοῦ ὅλου εὐθυγράμμου τὸ κέντρον τοῦ βάρεος ἐπὶ τᾶς ΒΔ ἐστίν.
γ΄
Εἴ κα δύο τμαμάτων ὁμοίων περιεχομένων ὑπὸ εὐθείας τε καὶ ὀρθογωνίου κώνου τομᾶς εἰς ἑκάτερον εὐθύγραμμον ἐγγραφῇ γνωρίμως, ἔχωντι δὲ τὰ ἐγγραφέντα εὐθύγραμμα τὰς πλευρὰς ἴσας τῷ πλήθει ἀλλάλαις, τῶν εὐθυγράμμων τὰ κέντρα τῶν βαρέων ὁμοίως τέμνοντι τὰς διαμέτρους τῶν τμαμάτων.
Ἔστω δύο τμάματα τὰ ΑΒΓ, ΞΟΠ, καὶ ἐγγεγράφθω εἰς αὐτὰ εὐθύγραμμα γνωρίμως, καὶ τᾶν πασᾶν πλευρᾶν [105] τὸν ἀριθμὸν ἐχόντων ἀλλάλοις ἴσον, διάμετροι δὲ ἔστωσαν τῶν τμαμάτων αἱ ΒΔ, ΟΡ, καὶ ἐπεζεύχθωσαν αἱ ΕΚ, ΖΙ, ΗΘ καὶ αἱ ΣΤ, ΥΦ, ΧΨ. Ἐπεὶ οὖν ἅ τε ΒΔ διαιρεῖται ὑπὸ τᾶν παραλλήλων εἰς τοὺς τῶν ἑξῆς ἀριθμῶν περισσῶν λόγους καὶ ἁ ΡΟ, καὶ τῷ πλήθει τὰ τμάματα αὐτᾶν ἴσα ἐντί, δῆλον ὡς τά τε τμάματα τᾶν διαμέτρων ἐν τοῖς αὐτοῖς λόγοις ἐσσεῖται, καὶ αἱ παράλληλοι τοὺς αὐτοὺς λόγους ἑξοῦντι. Καὶ τῶν τραπεζίων τοῦ τε ΑΕΚΓ καὶ τοῦ ΞΣΤΠ τὰ κέντρα τῶν βαρέων ἐσσεῖται ἐπὶ τᾶν ΛΔ, ΩΡ εὐθειᾶν ὁμοίως κείμενα, ἐπεὶ τὸν αὐτὸν ἔχοντι λόγον αἱ ΑΓ, ΕΚ ταῖς ΞΠ, ΣΤ· πάλιν δὲ καὶ τῶν ΕΖΙΚ, ΣΥΦΤ τραπεζίων τὰ κέντρα τῶν βαρέων ἐσσοῦνται ὁμοίως διαιρέοντα τὰς ΛΜ, ΩϠ, καὶ τῶν ΖΗΘΙ, ΥΧΨΦ τραπεζίων τὰ κέντρα τῶν βαρέων ἐσσοῦνται ὁμοίως διαιρέοντα τὰς ΜΝ, ϞϠ, ἐσσεῖται δὲ καὶ τῶν ΗΒΘ, ΧΟΨ τριγώνων τὰ κέντρα τῶν βαρέων ἐπὶ τᾶν ΒΝ, ΟϞ ὁμοίως κείμενα· ἔχοντι δὴ τὸν αὐτὸν λόγον τὰ τραπέζια καὶ τὰ τρίγωνα. Δῆλον οὖν ὅτι τοῦ ὅλου εὐθυγράμμου τοῦ ἐν τῷ ΑΒΓ τμάματι ἐγγεγραμμένου τὸ κέντρον τοῦ βάρεος ὁμοίως διαιρεῖ τὰν ΒΔ καὶ τοῦ ἐν τῷ ΞΟΠ τμάματι ἐγγεγραμμένου τὸ κέντρον τοῦ βάρεος τὰν ΟΡ· ὅπερ ἔδει δεῖξαι.
[106] δ΄.
Παντὸς τμάματος περιεχομένου ὑπὸ εὐθείας τε καὶ ὀρθογωνίου κώνου τομᾶς τὸ κέντρον τοῦ βάρεός ἐστιν ἐπὶ τᾶς τοῦ τμάματος διαμέτρου.
Ἔστω τμᾶμα ὡς εἴρηται τὸ ΑΒΓ, οὗ διάμετρος ἔστω ἁ ΒΔ. Δεικτέον ὅτι τοῦ εἰρημένου τμάματος τὸ κέντρον τοῦ βάρεός ἐστιν ἐπὶ τᾶς ΒΔ.
Εἰ γὰρ μή, ἔστω τὸ Ε, καὶ δι' αὐτοῦ ἄχθω παρὰ τὰν ΒΔ ἁ ΕΖ, καὶ ἐγγεγράφθω εἰς τὸ τμᾶμα τρίγωνον τὸ ΑΒΓ τὰν αὐτὰν βάσιν ἔχον καὶ ὕψος ἴσον, καὶ ὃν ἔχει λόγον ἁ ΓΖ ποτὶ ΖΔ, τοῦτον ἐχέτω τὸ ΑΒΓ τρίγωνον ποτὶ τὸ Κ χωρίον· ἐγγεγράφθω δὲ καὶ εὐθύγραμμον εἰς τὸ τμᾶμα γνωρίμως, ὥστε τὰ περιλειπόμενα τμάματα ἐλάσσονα εἶμεν τοῦ Κ· τοῦ δὴ ἐγγραφομένου εὐθυγράμμου τὸ κέντρον τοῦ βάρεός ἐστιν ἐπὶ τᾶς ΒΔ. Ἔστω τὸ Θ, καὶ ἐπεζεύχθω ἁ ΘΕ καὶ ἐκβεβλήσθω, καὶ παρὰ τὰν ΒΔ ἄχθω ἁ ΓΛ· δῆλον δὴ ὅτι μείζονα λόγον ἔχει τὸ ἐγγεγραμμένον εὐθύγραμμον ἐν τῷ τμάματι ποτὶ τὰ λειπόμενα τμάματα [107] ἢ τὸ ΑΒΓ τρίγωνον ποτὶ τὸ Κ. Ἀλλ' ὡς τὸ ΑΒΓ τρίγωνον ποτὶ τὸ Κ, οὕτως ἁ ΓΖ ποτὶ ΖΔ· καὶ τὸ ἐγγεγραμμένον ἄρα εὐθύγραμμον ποτὶ τὰ περιλειπόμενα τμάματα μείζονα λόγον ἔχει ἢ ἁ ΓΖ ποτὶ ΖΔ, τουτέστιν ἁ ΛΕ ποτὶ ΕΘ. Ἐχέτω οὖν ἁ ΜΕ ποτὶ ΕΘ τὸν αὐτὸν λόγον τὸν τοῦ εὐθυγράμμου ποτὶ τὰ τμάματα. Ἐπεὶ οὖν τὸ μὲν Ε κέντρον τοῦ ὅλου τμάματος, τοῦ δὲ ἐγγεγραμμένου ἐν αὐτῷ εὐθυγράμμου τὸ Θ, δῆλον ὅτι λοιποῦ τοῦ συγκειμένου μεγέθεος ἐκ τῶν περιλειπομένων τμαμάτων τὸ κέντρον τοῦ βάρεός ἐστιν ἐκβληθείσας τᾶς ΘΕ καὶ ἀπολαφθείσας τινὸς εὐθείας, ἃ λόγον ἔχει ποτὶ τὰν ΘΕ ὃν τὸ ἐγγεγραμμένον εὐθύγραμμον ποτὶ τὰ περιλειπόμενα τμάματα. Ὥστε εἴη κα τοῦ συγκειμένου μεγέθεος ἐκ τῶν περιλειπομένων τμαμάτων κέντρον τοῦ βάρεος τὸ Μ σαμεῖον· ὅπερ ἄτοπον· τᾶς γὰρ διὰ τοῦ Μ παρὰ τὰν ΒΔ ἀγομένας ἐπὶ ταὐτὰ ἐσσοῦνται πάντα τὰ περιλειπόμενα τμάματα. Δῆλον οὖν ὅτι ἐπὶ τᾶς ΒΔ τὸ κέντρον ἐστὶ τοῦ βάρεος.
ε΄.
Εἴ κα εἰς τμᾶμα περιεχόμενον ὑπὸ εὐθείας τε καὶ ὀρθογωνίου κώνου τομᾶς εὐθύγραμμον ἐγγραφῇ γνωρίμως, τοῦ ὅλου τμάματος τὸ κέντρον τοῦ βάρεος ἐγγύτερόν ἐστι τᾶς κορυφᾶς τοῦ τμάματος ἢ τὸ τοῦ ἐγγραφέντος εὐθυγράμμου κέντρον.
[108] Ἔστω τὸ ΑΒΓ τμᾶμα οἷον εἴρηται, διάμετρος δὲ αὐτοῦ ἁ ΔΒ, καὶ ἐγγεγράφθω εἰς αὐτὸ τρίγωνον πρῶτον γνωρίμως τὸ ΑΒΓ, καὶ τετμάσθω ἁ ΒΔ κατὰ τὸ Ε, ὥστε εἶμεν διπλασίαν τὰν ΒΕ τᾶς ΕΔ· ἔστιν οὖν τοῦ ΑΒΓ τριγώνου κέντρον τοῦ βάρεος τὸ Ε σαμεῖον. Τετμάσθω δὴ δίχα ἑκατέρα τᾶν ΑΒ, ΒΓ κατὰ τὰ Ζ, Η, καὶ διὰ τῶν Ζ, Η παρὰ τὰν ΒΔ ἄχθωσαν αἱ ΖΚ, ΛΗ· ἐσσεῖται ἄρα τοῦ μὲν ΑΚΒ τμάματος τὸ κέντρον τοῦ βάρεος ἐπὶ τᾶς ΖΚ, τοῦ ΒΓΛ τμάματος τὸ κέντρον τοῦ βάρεος ἐπὶ τᾶς ΗΛ. Ἔστω δὲ τὰ Θ, Ι, καὶ ἐπεζεύχθω ἁ ΘΙ. Καὶ ἐπεὶ παραλληλόγραμμόν ἐστι τὸ ΘΖΗΙ, καὶ ἴσα ἐστὶ τᾷ ΖΝ ἁ ΝΗ, ἔστιν ἄρα καὶ ἁ ΧΘ ἴσα τᾷ ΧΙ· ὥστε τοῦ ἐξ ἀμφοτέρων τῶν ΑΚΒ, ΒΛΓ τμαμάτων συγκειμένου μεγέθεος κέντρον τοῦ βάρεός ἐστιν ἐπὶ μέσας τᾶς ΘΙ [ἐπειδήπερ ἴσα ἐντὶ τμάματα], τουτέστιν τὸ Χ σαμεῖον. Ἐπεὶ δὲ τοῦ μὲν ΑΒΓ τριγώνου [109] κέντρον τοῦ βάρεός ἐστι τὸ Ε σαμεῖον, τοῦ δὲ συγκειμένου ἐξ ἀμφοτέρων τῶν ΑΚΒ, ΒΛΓ τὸ Χ, δῆλον οὖν ὅτι ὅλου τοῦ τμάματος τοῦ ΑΒΓ κέντρον τοῦ βάρεός ἐστιν ἐπὶ τᾶς ΧΕ, τουτέστι μεταξὺ τῶν Χ, Ε σαμείων· ὥστ' εἴη κα ἐγγύτερον τᾶς τοῦ τμάματος κορυφᾶς τὸ κέντρον τοῦ ὅλου τμάματος ἢ τὸ τοῦ ἐγγραφομένου τριγώνου γνωρίμως.
Ἐγγεγράφθω πάλιν εἰς τὸ τμᾶμα πεντάγωνον εὐθύγραμμον γνωρίμως τὸ ΑΚΒΛΓ, καὶ ἔστω τοῦ μὲν ὅλου τμάματος διάμετρος ἁ ΒΔ, ἑκατέρου δὲ τῶν τμαμάτων ἑκατέρα τᾶν ΚΖ, ΛΗ διάμετρος [καὶ ἐπεὶ ἐν τῷ ΑΚΒ τμάματι ἐγγέγραπται εὐθύγραμμον γνωρίμως, τοῦ ὅλου τμάματος κέντρον τοῦ βάρεός ἐστιν ἐγγύτερον τᾶς κορυφᾶς ἢ τὸ τοῦ εὐθυγράμμου]. Ἔστω οὖν τοῦ μὲν τμάματος τὸ κέντρον τοῦ βάρεος τὸ Θ, τοῦ δὲ τριγώνου τὸ Ι, πάλιν δὲ ἔστω τοῦ μὲν ΒΛΓ τμάματος τὸ κέντρον τοῦ βάρεος τὸ Μ, τοῦ δὲ τριγώνου τὸ Ν· ἐσσεῖται δὴ τοῦ μὲν ἐξ ἀμφοτέρων τῶν ΑΚΒ, ΒΛΓ τμαμάτων συγκειμένου [110] μεγέθεος κέντρον τοῦ βάρεος τὸ Χ, τοῦ δὲ ἐξ ἀμφοτέρων τῶν ΑΚΒ, ΒΛΓ τριγώνων τὸ Τ. Πάλιν οὖν, ἐπεὶ τοῦ ΑΒΓ τριγώνου κέντρον τοῦ βάρεός ἐστι τὸ Ε, τοῦ δὲ ἐξ ἀμφοτέρων τῶν ΑΚΒ, ΒΛΓ τμαμάτων τὸ Χ, δῆλον ὡς [τοῦ] ὅλου τοῦ ΑΒΓ τμάματος τὸ κέντρον τοῦ βάρεός ἐστιν ἐπὶ τᾶς ΧΕ τμαθείσας οὕτως ὥστε ὃν ἔχει λόγον τὸ ΑΒΓ τρίγωνον ποτὶ τὰ συναμφότερα τὰ ΑΚΒ, ΒΛΓ τμάματα, τὸν αὐτὸν λόγον ἔχειν τὸ τμᾶμα αὐτᾶς τὸ πέρας ἔχον τὸ Χ ποτὶ τὸ ἔλασσον τμᾶμα. Τοῦ δὲ ΑΚΒΛΓ πενταγώνου κέντρον τοῦ βάρεός ἐστιν ἐπὶ τᾶς ΕΤ εὐθείας τμαθείσας οὕτως, ὥστε ὃν ἔχει λόγον τὸ ΑΒΓ τρίγωνον ποτὶ τὰ ΑΚΒ, ΒΛΓ τρίγωνα, τοῦτον ἔχειν τὸν λόγον τὸ τμᾶμα αὐτᾶς τὸ πέρας ἔχον τὸ Τ ποτὶ τὸ λοιπόν. Ἐπεὶ οὖν μείζονα λόγον ἔχει τὸ ΑΒΓ τρίγωνον ποτὶ τὰ ΚΑΒ, ΛΒΓ τρίγωνα ἢ ποτὶ τὰ τμάματα, δῆλον οὖν ὅτι τοῦ ΑΒΓ τμάματος τὸ κέντρον τοῦ βάρεος ἐγγύτερόν ἐστι τᾶς Β κορυφᾶς ἢ τὸ τοῦ ἐγγραφομένου εὐθυγράμμου. Καὶ ἐπὶ πάντων εὐθυγράμμων τῶν ἐγγραφομένων ἐς τὰ τμάματα γνωρίμως ὁ αὐτὸς λόγος.
Ϛ΄.
Τμάματος δοθέντος περιεχομένου ὑπὸ εὐθείας καὶ ὀρθογωνίου κώνου τομᾶς δυνατόν ἐστιν ἐς τὸ τμᾶμα εὐθύγραμμον γνωρίμως ἐγγράψαι, ὥστε τὰν μεταξὺ εὐθεῖαν τῶν κέντρων τοῦ βάρεος τοῦ τμάματος καὶ τοῦ ἐγγραφέντος εὐθυγράμμου ἐλάσσονα εἶμεν πάσας τᾶς προτεθείσας εὐθείας.
[111] Δεδόσθω τμᾶμα τὸ ΑΒΓ οἷον εἴρηται, οὗ κέντρον ἔστω τοῦ βάρεος τὸ Θ, καὶ ἐγγεγράφθω εἰς αὐτὸ τρίγωνον γνωρίμως τὸ ΑΒΓ, καὶ ἔστω ἁ προτεθεῖσα εὐθεῖα ἁ Ζ, καὶ ὃν λόγον ἔχει ἁ ΒΘ ποτὶ Ζ, τοῦτον τὸν λόγον ἐχέτω τὸ ΑΒΓ τρίγωνον ποτὶ τὸ Χ χωρίον. Ἐγγεγράφθω δὴ εἰς τὸ ΑΒΓ τμᾶμα εὐθύγραμμον γνωρίμως τὸ ΑΚΒΛΓ, ὥστε τὰ περιλειπόμενα τμάματα ἐλάσσονα εἶμεν τοῦ Χ, καὶ ἔστω τοῦ ἐγγραφέντος εὐθυγράμμου κέντρον τοῦ βάρεος τὸ Ε. Φαμὶ δὴ τὰν ΘΕ ἐλάσσονα εἶμεν τᾶς Ζ.
Εἰ γὰρ μή, ἤτοι ἴσα ἐστὶν ἢ μείζων. Ἐπεὶ δὲ τὸ ΑΚΒΛΓ εὐθύγραμμον ποτὶ τὰ περιλειπόμενα τμάματα μείζονα λόγον ἔχει ἢ τὸ ΑΒΓ τρίγωνον ποτὶ Χ, τουτέστιν ἁ ΘΒ ποτὶ Ζ, ἔχει δὲ καὶ ἁ ΒΘ ποτὶ Ζ οὐκ ἐλάσσονα λόγον ἢ ὃν ἔχει ποτὶ ΘΕ, διὰ τὸ μὴ ἐλάσσονα εἶμεν τὰν ΘΕ τᾶς Ζ, πολλῷ ἄρα τὸ ΑΚΒΛΓ εὐθύγραμμον ποτὶ τὰ περιλειπόμενα τμάματα μείζονα λόγον ἔχει ἢ ἁ ΒΘ ποτὶ ΘΕ· ὥστε, ἐὰν ποιῶμες ὡς τὸ ΑΚΒΛΓ εὐθύγραμμον ποτὶ τὰ περιλειπόμενα τμάματα, οὕτως ἄλλαν τινα ποτὶ ΘΕ [ἐπειδὴ τοῦ ΑΒΓ τμάματος τὸ κέντρον τοῦ βάρεός ἐστι [112] τὸ Θ, ἐκβληθείσας τᾶς ΕΘ καὶ ἀπολαφθείσας τινὸς εὐθείας ἐχούσας λόγον ποτὶ τὰν ΕΘ, ὃν τὸ ΑΚΒΛΓ εὐθύγραμμον ποτὶ τὰ περιλειπόμενα τμάματα], ἐσσεῖται μείζων τᾶς ΘΒ. Ἐχέτω οὖν ἁ ΗΘ ποτὶ ΘΕ. Τὸ Η ἄρα κέντρον τοῦ βάρεος τοῦ συγκειμένου ἐκ τῶν περιλειπομένων τμαμάτων· ὅπερ ἀδύνατον· τᾶς γὰρ διὰ τοῦ Η ἀχθείσας παρὰ τὰν ΑΓ ἐπὶ τὰ αὐτά ἐστιν [τῷ τμήματι]. Δῆλον οὖν ὅτι ἁ ΘΕ ἐλάσσων ἐστὶ τᾶς Ζ· ἔδει δὲ τοῦτο δεῖξαι.
ζ΄.
Δύο τμαμάτων ὁμοίων περιεχομένων ὑπό τε εὐθείας καὶ ὀρθογωνίου κώνου τομᾶς τὰ κέντρα τῶν βαρέων εἰς τὸν αὐτὸν λόγον τέμνοντι τὰς διαμέτρους.
Ἔστω δύο τμάματα οἷα εἴρηται τὰ ΑΒΓ, ΕΖΗ, ὧν διάμετροι αἱ ΒΔ, ΖΘ, καὶ ἔστω τοῦ μὲν ΑΒΓ τμάματος [113] κέντρον τοῦ βάρεος τὸ Κ σαμεῖον, τοῦ δὲ ΕΖΗ τὸ Λ. Δεικτέον ὅτι εἰς τὸν αὐτὸν λόγον τέμνοντι τὰς διαμέτρους τὰ Κ, Λ.
Εἰ γὰρ μή, ἔστω ὡς ἁ ΚΒ ποτὶ ΚΔ, οὕτως ἁ ΖΜ ποτὶ ΜΘ, καὶ ἐγγεγράφθω εἰς τὸ ΕΖΗ τμᾶμα εὐθύγραμμον γνωρίμως, ὥστε τὰν μεταξὺ τοῦ κέντρου τοῦ τμάματος καὶ τοῦ ἐγγραφομένου εὐθυγράμμου ἐλάσσονα εἶμεν τᾶς ΛΜ, καὶ ἔστω τοῦ ἐγγραφέντος εὐθυγράμμου κέντρον τοῦ βάρεος τὸ Ξ σαμεῖον, ἐγγεγράφθω δὲ εἰς τὸ ΑΒΓ τμᾶμα τῷ ἐν τῷ ΕΖΗ [ἐγγεγραμμένῳ εὐθυγράμμῳ] ὁμοῖον εὐθύγραμμον [τουτέστιν ὁμοίως γνωρίμως]· οὗ τὸ κέντρον τοῦ βάρεος τᾶς κορυφᾶς ἐγγύτερον ἤπερ τὸ τοῦ τμάματος· ὅπερ ἀδύνατον. Δῆλον οὖν ὅτι τὸν αὐτὸν λόγον ἔχει ἁ ΒΚ ποτὶ ΚΔ, ὃν ἁ ΖΛ ποτὶ ΛΘ.
η΄.
Παντὸς τμάματος περιεχομένου ὑπὸ εὐθείας τε καὶ ὀρθογωνίου κώνου τομᾶς τὸ κέντρον τοῦ βάρεος διαιρεῖ τὰν τοῦ τμάματος διάμετρον, ὥστε εἶμεν ἁμιόλιον τὸ μέρος αὐτᾶς τὸ ποτὶ τᾷ κορυφᾷ τοῦ τμάματος τοῦ ποτὶ τᾷ βάσει.
[114] Ἔστω τὸ ΑΒΓ τμᾶμα οἷον εἴρηται, διάμετρος δὲ αὐτοῦ ἔστω ἁ ΒΔ, κέντρον δὲ τοῦ βάρεος τὸ Θ σαμεῖον. Δεικτέον ὅτι ἁμιολία ἐστὶν ἁ ΒΘ τᾶς ΘΔ. Ἐγγεγράφθω ἐς τὸ ΑΒΓ τμᾶμα γνωρίμως τρίγωνον τὸ ΑΒΓ, οὗ κέντρον τοῦ βάρεος ἔστω τὸ Ε, καὶ τετμάσθω δίχα ἑκατέρα τᾶν ΑΒ, ΒΓ, καὶ ἄχθων αἱ ΚΖ, ΗΛ· διάμετροι ἄρα ἐντὶ τῶν ΑΚΒ, ΒΛΓ τμαμάτων. Ἔστω οὖν τοῦ μὲν ΑΚΒ τμάματος τὸ κέντρον τοῦ βάρεος τὸ Μ, τοῦ δὲ ΒΛΓ τὸ Ν, καὶ ἐπεζεύχθωσαν αἱ ΖΗ, ΜΝ, ΚΛ· τοῦ ἄρα ἐξ ἀμφοτέρων τῶν τμαμάτων συγκειμένου μεγέθεος τὸ κέντρον τοῦ βάρεός ἐστι τὸ Χ. Καὶ ἐπεί ἐστιν ὡς ἁ ΒΘ ποτὶ ΘΔ, οὕτως ἁ ΚΜ ποτὶ ΜΖ, καὶ συνθέντι καὶ ἐναλλὰξ ὡς ἁ ΒΔ ποτὶ ΚΖ, οὕτως ἁ ΔΘ ποτὶ ΜΖ, τετραπλασία δὲ ἁ ΒΔ τᾶς ΚΖ· τοῦτο γὰρ ἐπὶ τέλει δείκνυται, οὗ σαμεῖον Ϡ· τετραπλασίων ἄρα καὶ ἁ ΔΘ τᾶς ΜΖ· ὥστε καὶ λοιπὰ ἁ ΒΘ λοιπᾶς τᾶς ΚΜ, τουτέστι τᾶς ΣΧ, τετραπλασίων. Καὶ λοιπὰ ἄρα συναμφοτέρα ἁ ΒΣ, ΧΘ τριπλασίων τᾶς ΣΧ. Ἔστω τριπλασία ἁ ΒΣ τᾶς ΣΞ· καὶ ἁ ΧΘ ἄρα τᾶς ΞΧ ἐστὶ τριπλασία. Καὶ ἐπεὶ τετραπλασίων ἐστὶν ἁ ΒΔ τᾶς ΒΣ· καὶ γὰρ τοῦτο δείκνυται· ἁ δὲ ΒΣ τᾶς ΣΞ τριπλασίων, ἁ ΞΒ ἄρα τᾶς ΒΔ τρίτον μέρος ἐστίν. Ἔστιν δὲ καὶ ἁ ΕΔ τᾶς ΔΒ τρίτον μέρος, ἐπειδήπερ κέντρον τοῦ βάρεος τοῦ ΑΒΓ τριγώνου ἐστὶ τὸ Ε· καὶ λοιπὰ ἄρα [115] ἁ ΞΕ τρίτον μέρος τᾶς ΒΔ. Καὶ ἐπεὶ τοῦ μὲν ὅλου τμάματος κέντρον τοῦ βάρεός ἐστι τὸ Θ σαμεῖον, τοῦ δὲ ἐξ ἀμφοτέρων τῶν ΑΚΒ, ΒΛΓ τμαμάτων συγκειμένου μεγέθεος τὸ κέντρον τοῦ βάρεος τὸ Χ, τοῦ δὲ ΑΒΓ τριγώνου τὸ Ε, ἐσσεῖται ὡς τὸ ΑΒΓ τρίγωνον ποτὶ τὰ καταλειπόμενα τμάματα, οὕτως ἁ ΧΘ ποτὶ ΘΕ. Τριπλάσιον δὲ τὸ ΑΒΓ τρίγωνον τῶν τμαμάτων [ἐπειδήπερ τὸ ὅλον τμᾶμα ἐπίτριτόν ἐστι τοῦ ΑΒΓ τριγώνου]· τριπλασία ἄρα καὶ ἁ ΧΘ τᾶς ΘΕ. Ἐδείχθη δὲ ἁ ΧΘ τριπλασία καὶ τᾶς ΧΞ· πενταπλασία ἄρα ἐστὶν ἁ ΞΕ τᾶς ΕΘ, τουτέστιν ἁ ΔΕ τᾶς ΕΘ· ἴσα γάρ ἐστιν αὐτᾷ· ὥστε ἑξαπλασία ἐστὶν ἁ ΔΘ τᾶς ΘΕ. Καί ἐντι τᾶς ΔΕ τριπλασία ἁ ΒΔ· ἁμιολία ἄρα ἐντὶ ἁ ΒΘ τᾶς ΘΔ· ὅπερ ἔδει δεῖξαι.
θ΄.
Εἴ κα τέσσαρες γραμμαὶ ἀνάλογον ἔωντι ἐν τᾷ συνεχεῖ ἀναλογίᾳ, καὶ ὃν ἔχει λόγον ἁ ἐλαχίστα ποτὶ τὰν ὑπεροχάν, ᾇ ὑπερέχει ἁ μεγίστα τᾶς ἐλαχίστας, τοῦτον ἔχουσά τις λαφθῇ ποτὶ τὰ τρία πεμπταμόρια τᾶς ὑπεροχᾶς, ᾇ ὑπερέχει ἁ μεγίστα τᾶν ἀνάλογον τᾶς τρίτας, ὃν δὲ ἔχει λόγον ἁ ἴσα τᾷ τε διπλασίᾳ τᾶς μεγίστας τᾶν ἀνάλογον καὶ τᾷ τετραπλασίᾳ τᾶς δευτέρας καὶ τᾷ ἑξαπλασίᾳ τᾶς τρίτας καὶ τᾷ τριπλασίᾳ τᾶς τετάρτας ποτὶ τὰν ἴσαν τᾷ τε πενταπλασίᾳ τᾶς μεγίστας καὶ τᾷ δεκαπλασίᾳ τᾶς δευτέρας καὶ τᾷ δεκαπλασίᾳ τᾶς τρίτας καὶ τᾷ πενταπλασίᾳ τᾶς τετάρτας, τοῦτον ἔχουσά τις λαφθῇ ποτὶ τὰν ὑπεροχάν, ᾇ ὑπερέχει ἁ μεγίστα τᾶν ἀνάλογον [116] τᾶς τρίτας, συναμφότεραι αἱ λαφθεῖσαι ἐσσοῦνται δύο πεμπταμόρια τᾶς μεγίστας.
Ἔστωσαν τέσσαρες γραμμαὶ ἀνάλογον αἱ ΑΒ, ΒΓ, ΒΔ, ΒΕ, καὶ ὃν μὲν ἔχει λόγον ἁ ΒΕ ποτὶ ΕΑ, τοῦτον ἐχέτω ἁ ΖΗ ποτὶ τὰ τρία πέμπτα τᾶς ΑΔ, ὃν δὲ λόγον ἔχει ἁ ἴσα τᾷ διπλασίᾳ τᾶς ΑΒ καὶ τετραπλασίᾳ τᾶς ΒΓ καὶ ἑξαπλασίᾳ τᾶς ΒΔ καὶ τριπλασίᾳ τᾶς ΒΕ ποτὶ τὰν ἴσαν τᾷ πενταπλασίᾳ τᾶς ΑΒ καὶ δεκαπλασίᾳ τᾶς ΓΒ καὶ δεκαπλασίᾳ τᾶς ΒΔ καὶ πενταπλασίᾳ τᾶς ΒΕ, τοῦτον ἐχέτω τὸν λόγον ἁ ΗΘ ποτὶ τὰν ΑΔ. Δεικτέον ὅτι ἁ ΖΘ δύο πενταμόριά ἐντι τᾶς ΑΒ.
Ἐπεὶ γὰρ ἀνάλογόν ἐντι αἱ ΑΒ, ΒΓ, ΒΔ, ΒΕ, καὶ αἱ ΑΓ, ΓΔ, ΔΕ ἐν τῷ αὐτῷ λόγῳ ἐντί, καὶ συναμφότερος ἁ ΑΒ, ΒΓ ποτὶ τὰν ΒΔ, τουτέστιν ἁ διπλασία συναμφοτέρου τᾶς ΑΒ, ΒΓ ποτὶ τὰν διπλασίαν τᾶς ΒΔ, ἔχει τὸν αὐτὸν λόγον, ὃν ἁ ΑΔ ποτὶ τὰν ΔΕ, καὶ συναμφότερος ἁ ΔΒ, ΒΓ ποτὶ τὰν ΕΒ, καὶ πάντα ποτὶ πάντα· τὸν αὐτὸν ἄρα λόγον ἔχει ἁ ΑΔ ποτὶ τὰν ΔΕ, ὃν ἁ ἴσα τᾷ τε διπλασίᾳ τᾶς ΑΒ καὶ τᾷ τριπλασίᾳ τᾶς ΓΒ καὶ τᾷ ΔΒ ποτὶ τὰν ἴσαν τᾷ τε διπλασίᾳ τᾶς ΒΔ καὶ τᾷ ΒΕ, ὃν δὲ λόγον ἔχει ἁ ἴσα τᾷ τε διπλασίᾳ τᾶς ΑΒ καὶ τᾷ τετραπλασίᾳ τᾶς ΒΓ καὶ τᾷ τετραπλασίᾳ τᾶς ΒΔ καὶ τᾷ διπλασίᾳ τᾶς ΒΕ ποτὶ τὰν ἴσαν τᾷ τε διπλασίᾳ τᾶς ΔΒ καὶ τᾷ ΕΒ, τοῦτον ἕξει ἁ ΔΑ ποτὶ ἐλάσσονα τᾶς ΔΕ. Ἐχέτω οὖν ποτὶ ΔΟ. Καὶ ἀμφότεραι δὲ ποτὶ τὰς πρώτας τὸν αὐτὸν ἑξοῦντι [117] λόγον· ἕξει οὖν ἁ ΟΑ ποτὶ ΑΔ τὸν αὐτὸν λόγον, ὃν ἁ ἴσα τᾷ τε διπλασίᾳ τᾶς ΑΒ καὶ τετραπλασίᾳ τᾶς ΓΒ καὶ ἑξαπλασίᾳ τᾶς ΒΔ καὶ τριπλασίᾳ τᾶς ΒΕ ποτὶ τὰν συγκειμέναν ἔκ τε τᾶς διπλασίας συναμφοτέρας τᾶς ΑΒ, ΕΒ καὶ τετραπλασίας συναμφοτέρου τᾶς ΓΒ, ΒΔ. Ἔχει δὲ καὶ ἁ ΑΔ ποτὶ ΗΘ τὸν αὐτὸν λόγον, ὃν ἁ πενταπλασία συναμφοτέρου τᾶς ΑΒ, ΒΕ μετὰ τᾶς δεκαπλασίας συναμφοτέρου τᾶς ΓΒ, ΒΔ ποτὶ τὰν συγκειμέναν ἔκ τε τᾶς διπλασίας τᾶς ΑΒ καὶ τᾶς τετραπλασίας τᾶς ΓΒ καὶ τᾶς τριπλασίας τᾶς ΕΒ καὶ ἑξαπλασίας τᾶς ΒΔ· ἀνομοίως δὲ τῶν λόγων τεταγμένων, τουτέστιν ἐν τεταραγμένᾳ ἀναλογίᾳ, δι' ἴσου τὸν αὐτὸν ἔχει λόγον ἁ ΟΑ ποτὶ ΗΘ, ὃν ἁ πενταπλασία συναμφοτέρου τᾶς ΑΒ, ΒΕ μετὰ τᾶς δεκαπλασίας τᾶν ΓΒ, ΒΔ ποτὶ τὰν συγκειμέναν ἔκ τε τᾶς διπλασίας συναμφοτέρου τᾶς ΑΒ, ΒΕ καὶ τᾶς τετραπλασίας συναμφοτέρου τᾶς ΓΒ, ΒΔ. Ἀλλ' ἁ συγκειμένα ἔκ τε τᾶς πενταπλασίας συναμφοτέρου τᾶς ΑΒ, ΒΕ μετὰ τᾶς δεκαπλασίας συναμφοτέρου τᾶς ΓΒ, ΒΔ ποτὶ τὰν συγκειμέναν ἔκ τε τᾶς διπλασίας συναμφοτέρου τᾶς ΑΒ, ΒΕ καὶ τετραπλασίας συναμφοτέρου τᾶς ΓΒ, ΒΔ λόγον ἔχει, ὃν πέντε ποτὶ δύο· καὶ ἁ ΑΟ ἄρα ποτὶ ΗΘ λόγον ἔχει, ὃν πέντε ποτὶ δύο. Πάλιν, ἐπεὶ ἁ ΟΔ ποτὶ ΔΑ τὸν αὐτὸν ἔχει λόγον, ὃν ἁ ΕΒ μετὰ τᾶς διπλασίας τᾶς ΒΔ ποτὶ τὰν ἴσαν τᾷ συγκειμένᾳ ἔκ τε τᾶς διπλασίας συναμφοτέρου τᾶς ΑΒ, ΒΕ μετὰ τᾶς τετραπλασίας συναμφοτέρου τᾶς ΓΒ, ΒΔ, ἔστιν δὲ καὶ ὡς ἁ ΑΔ ποτὶ ΔΕ, οὕτως ἁ συγκειμένα ἔκ τε τᾶς διπλασίας τᾶς ΑΒ καὶ [118] τριπλασίας τᾶς ΓΒ καὶ τᾶς ΒΔ ποτὶ τὰν ἴσαν τᾷ τε ΕΒ καὶ τᾷ διπλασίᾳ τᾶς ΒΔ, ἀνομοίως οὖν τῶν λόγων τεταγμένων, τουτέστιν τεταραγμένας ἐούσας τᾶς ἀναλογίας, δι' ἴσου ὡς ἁ ΟΔ ποτὶ ΔΕ, οὕτως ἁ διπλασία τᾶς ΑΒ μετὰ τᾶς τριπλασίας τᾶς ΒΓ καὶ ἁ ΒΔ ποτὶ τὰν συγκειμέναν ἐκ τᾶς διπλασίας συναμφοτέρου τᾶς ΑΒ, ΒΕ καὶ τᾶς τετραπλασίας τᾶν ΓΒ, ΒΔ· ὥστε καὶ ὡς ἁ ΟΕ ποτὶ ΕΔ ἐστίν, οὕτως ἁ ΓΒ μετὰ τᾶς τριπλασίας τᾶς ΒΔ καὶ διπλασίας τᾶς ΕΒ ποτὶ τὰν διπλασίαν συναμφοτέρου τᾶς ΑΒ, ΒΕ καὶ τετραπλασίαν συναμφοτέρου τᾶς ΓΒ, ΒΔ. Ἔστιν δὲ καὶ ὡς ἁ ΔΕ ποτὶ ΕΒ, οὕτως ἅ τε ΑΓ ποτὶ ΓΒ, ἐπεὶ καὶ κατὰ σύνθεσιν, καὶ ἁ τριπλασία τᾶς ΓΔ ποτὶ τὰν τριπλασίαν τᾶς ΔΒ καὶ ἁ διπλασία τᾶς ΔΕ ποτὶ τὰν διπλασίαν τᾶς ΕΒ· ὥστε καὶ ἁ συγκειμένα ἔκ τε τᾶς ΑΓ καὶ τριπλασίας τᾶς ΓΔ καὶ διπλασίας τᾶς ΔΕ ποτὶ τὰν συγκειμέναν ἔκ τε τᾶς ΓΒ καὶ τριπλασίας τᾶς ΔΒ καὶ διπλασίας τᾶς ΕΒ. Ἀνομοίως οὖν πάλιν τῶν λόγων τεταγμένων, τουτέστιν ἐν τεταραγμένᾳ ἀναλογίᾳ, δι' ἴσου τὸν αὐτὸν ἕξει λόγον ἁ ΕΟ ποτὶ ΕΒ, ὃν ἁ ΑΓ μετὰ τᾶς τριπλασίας τᾶς ΓΔ καὶ διπλασίας τᾶς ΔΕ ποτὶ τὰν διπλασίαν συναμφοτέρου τᾶς ΑΒ, ΒΕ μετὰ τᾶς τετραπλασίας συναμφοτέρου τᾶς ΓΒ, ΒΔ· ὅλα οὖν ἁ ΟΒ ποτὶ ΒΕ τὸν αὐτὸν ἔχει λόγον, ὃν ἁ ἴσα τᾷ τε τριπλασίᾳ τᾶς ΑΒ μετὰ τᾶς ἑξαπλασίας τᾶς ΓΒ καὶ τᾷ τριπλασίᾳ τᾶς ΒΔ ποτὶ τὰν διπλασίαν συναμφοτέρου τᾶς ΑΒ, ΒΕ μετὰ τᾶς τετραπλασίας συναμφοτέρου τᾶς ΓΒ, ΒΔ. Καὶ ἐπεὶ [119] αἵ τε ΕΔ, ΔΓ, ΓΑ ἐν τῷ αὐτῷ λόγῳ ἐντὶ καὶ συναμφότερος ἑκάστα τᾶν ΕΒ, ΒΔ, ΔΒ, ΒΓ, ΓΒ, ΒΑ, ἐσσεῖται καὶ ὡς ἁ ΕΔ ποτὶ ΔΑ, οὕτως συναμφότερος ἁ ΕΒ, ΒΔ ποτὶ συναμφότερον τὰν ΔΒ, ΒΓ μετὰ τᾶς συναμφοτέρου τᾶς ΓΒ, ΒΑ. Καὶ συνθέντι ἄρα ἐστὶν ὡς ἁ ΑΕ ποτὶ ΑΔ, οὕτως συναμφότερος ἁ ΕΒ, ΒΔ μετὰ συναμφοτέρου τᾶς ΑΒ, ΒΓ καὶ συναμφοτέρου τᾶς ΓΒΔ, ὅ ἐστι συναμφότερος ἁ ΕΒΑ μετὰ τᾶς διπλασίας συναμφοτέρου τᾶς ΔΒΓ ποτὶ συναμφότερον τὰν ΒΔ, ΒΑ μετὰ τᾶς διπλασίας τᾶς ΒΓ· ὥστε καὶ ἁ διπλασία ποτὶ τὰν διπλασίαν τὸν αὐτὸν ἕξει λόγον, τουτέστιν ὡς ἁ ΕΑ ποτὶ ΑΔ, οὕτως ἁ διπλασία συναμφοτέρου τᾶς ΕΒΑ μετὰ τᾶς τετραπλασίας συναμφοτέρου τᾶς ΓΒΔ ποτὶ τὰν διπλασίαν συναμφοτέρου τᾶς ΑΒΔ μετὰ τᾶς τετραπλασίας τᾶς ΓΒ· ὥστε καὶ ὡς ἁ ΕΑ ποτὶ τὰ τρία πέμπτα τᾶς ΑΔ, οὕτως ἁ συγκειμένα ἔκ τε τᾶς διπλασίας συναμφοτέρου τᾶς ΑΒΕ καὶ τετραπλασίας συναμφοτέρου τᾶς ΓΒΔ ποτὶ τὰ τρία πέμπτα τᾶς συγκειμένας ἔκ τε τᾶς διπλασίας συναμφοτέρου τᾶς ΑΒΔ καὶ τετραπλασίας τᾶς ΓΒ. Ἀλλ' ὡς ἁ ΕΑ ποτὶ τὰ τρία πέμπτα τᾶς ΑΔ, οὕτως ἐστὶν ἁ ΕΒ ποτὶ ΖΗ· καὶ ὡς ἄρα ἁ ΕΒ ποτὶ ΖΗ, οὕτως ἁ διπλασία συναμφοτέρου τᾶς ΑΒΕ μετὰ τᾶς τετραπλασίας συναμφοτέρου τᾶς ΔΒΓ ποτὶ τὰ τρία πέμπτα τᾶς συγκειμένας ἔκ τε τᾶς διπλασίας συναμφοτέρου τᾶς ΑΒΔ μετὰ τᾶς τετραπλασίας τᾶς ΓΒ. Ἐδείχθη δὲ καὶ ὡς ἁ ΟΒ ποτὶ ΕΒ, οὕτως ἁ τριπλασία συναμφοτέρου τᾶς ΑΒΔ μετὰ τᾶς ἑξαπλασίας τᾶς ΓΒ ποτὶ τὰν διπλασίαν συναμφοτέρου τᾶς ΑΒΕ καὶ τετραπλασίαν συναμφοτέρου τᾶς ΓΒΔ. Καὶ δι' ἴσου ἄρα [120] ἐστὶν ὡς ἁ ΟΒ ποτὶ ΖΗ, οὕτως ἁ συγκειμένα ἔκ τε τᾶς τριπλασίας συναμφοτέρου τᾶς ΑΒΔ καὶ ἑξαπλασίας τᾶς ΓΒ ποτὶ τὰ τρία πέμπτα τᾶς συγκειμένας ἔκ τε τᾶς διπλασίας συναμφοτέρου τᾶς ΑΒΔ καὶ τετραπλασίας τᾶς ΓΒ. Ἀλλὰ ἁ συγκειμένα ἔκ τε τᾶς τριπλασίας συναμφοτέρου τᾶς ΑΒΔ καὶ ἑξαπλασίας τᾶς ΓΒ ποτὶ μὲν τὰν συγκειμέναν ἔκ τε τᾶς διπλασίας συναμφοτέρου τᾶς ΑΒΔ καὶ τετραπλασίας τᾶς ΓΒ λόγον ἔχει, ὃν τρία ποτὶ δύο, ποτὶ δὲ τὰ τρία πέμπτα τᾶς αὐτᾶς λόγον ἔχει, ὃν πέντε ποτὶ δύο· ἐδείχθη δὲ καὶ ἁ ΑΟ ποτὶ ΗΘ λόγον ἔχουσα, ὃν πέντε ποτὶ δύο· καὶ ὅλα ἄρα ἁ ΒΑ ποτὶ ὅλαν τὰν ΖΘ λόγον ἔχει, ὃν πέντε ποτὶ δύο. Εἰ δὲ τοῦτο, δύο πεμπταμόριά ἐντι ἁ ΖΘ τᾶς ΑΒ· ὅπερ ἔδει δεῖξαι.
ι΄.
Παντὸς τόμου ἀπὸ ὀρθογωνίου κώνου τομᾶς ἀφαιρουμένου τὸ κέντρον τοῦ βάρεος ἐπὶ τᾶς εὐθείας ἐστίν, ἃ διάμετρός ἐστι τοῦ τόμου, τόνδε τὸν τρόπον κείμενον· διαιρεθείσας τᾶς εὐθείας εἰς ἴσα πέντε ἐπὶ μέσου πεμπταμορίου, ὥστε τὸ τμᾶμα αὐτοῦ τὸ ἐγγύτερον τᾶς ἐλάσσονος βάσιος τοῦ τόμου ποτὶ τὸ λοιπὸν τμᾶμα τὸν αὐτὸν ἔχειν λόγον, ὃν ἔχει τὸ στερεὸν τὸ βάσιν μὲν ἔχον τὸ τετράγωνον τὸ ἀπὸ τᾶς μείζονος τᾶν βάσιων τοῦ τόμου, ὕψος δὲ τὰν ἴσαν συναμφοτέρᾳ τᾷ τε διπλασίᾳ τᾶς ἐλάσσονος τᾶν βάσιων καὶ τᾷ μείζονι, ποτὶ τὸ στερεὸν τὸ βάσιν μὲν ἔχον τὸ τετράγωνον τὸ ἀπὸ τᾶς ἐλάσσονος τᾶν βάσιων τοῦ [121] τόμου, ὕψος δὲ τὰν ἴσαν ἀμφοτέρᾳ τᾷ τε διπλασίᾳ τᾶς μείζονος καὶ τᾷ ἐλάσσονι αὐτᾶν.
Ἔστωσαν ἐν ὀρθογωνίου κώνου τομᾷ δύο εὐθεῖαι αἱ ΑΓ, ΔΕ, διάμετρος δὲ ἔστω τοῦ ΑΒΓ τμάματος ἁ ΒΖ· φανερὸν δὴ ὅτι καὶ τοῦ ΑΔΕΓ τόμου διάμετρός ἐστιν ἁ ΗΖ [καὶ αἱ μὲν ΑΓ, ΔΕ παράλληλοί ἐντι τᾷ κατὰ τὸ Β ἐφαπτομένᾳ τᾶς τομᾶς]· καὶ τᾶς ΗΖ εὐθείας διαιρεθείσας εἰς πέντε ἴσα μέσον ἔστω πεμπταμόριον ἁ ΘΚ, ἁ δὲ ΘΙ ποτὶ τὰν ΙΚ τὸν αὐτὸν ἐχέτω λόγον, ὃν ἔχει τὸ στερεὸν τὸ βάσιν μὲν ἔχον τὸ ἀπὸ τᾶς ΑΖ τετράγωνον, ὕψος δὲ τὰν ἴσαν ἀμφοτέραις τᾷ τε διπλασίᾳ τᾶς ΔΗ καὶ τᾷ ΑΖ, ποτὶ τὸ στερεὸν τὸ βάσιν ἔχον τὸ ἀπὸ τᾶς ΔΗ τετράγωνον, ὕψος δὲ τὰν ἴσαν ἀμφοτέραις τᾷ διπλασίᾳ τᾶς ΑΖ καὶ τᾷ ΔΗ. Δεικτέον ὅτι τοῦ ΑΔΕΓ τόμου κέντρον ἐστὶ τοῦ βάρεος τὸ Ι σαμεῖον.
Ἔστω δὴ τᾷ μὲν ΖΒ ἴσα ἁ ΜΝ, τᾷ δὲ ΗΒ ἴσα ἁ ΝΟ, καὶ
[122]λελάφθω τᾶν μὲν ΜΝΟ μέσα ἀνάλογον ἁ ΝΞ, τετάρτα δὲ ἀνάλογον ἁ ΤΝ, καὶ ὡς ἁ ΤΜ ποτὶ ΤΝ, οὕτως ἁ ΖΘ ποτί τινα ἀπὸ τοῦ Ι, ὅπου ἂν ἔρχηται τὸ ἕτερον σαμεῖον· οὐδὲν γὰρ διαφέρει εἴτε καὶ μεταξὺ τῶν Ζ, Η εἴτε καὶ μεταξὺ τῶν Η, Β· τὰν ΙΡ. Καὶ ἐπεὶ ἐν ὀρθογωνίου κώνου τομᾷ διάμετρός ἐστι τοῦ τμάματος ἁ ΖΒ, ἁ ΒΖ ἤτοι ἀρχικά ἐστι τᾶς τομᾶς ἢ παρὰ τὰν διάμετρον ἆκται, αἱ δὲ ΑΖ, ΔΗ εἰς αὐτὰν τεταγμένως ἐντὶ καταγμέναι, ἐπειδὴ παράλληλοί ἐντι τᾷ ἐπὶ τοῦ Β τᾶς τομᾶς ἐφαπτομένᾳ. Εἰ δὲ τοῦτο, ἔστιν ὡς ἁ ΑΖ ποτὶ ΔΗ δυνάμει, οὕτως ἁ ΖΒ ποτὶ ΒΗ μάκει, τουτέστιν ἁ ΜΝ ποτὶ ΝΟ. Ὡς δὲ ἁ ΜΝ ποτὶ ΝΟ μάκει, οὕτως ἁ ΜΝ ποτὶ ΝΞ δυνάμει· καὶ ὡς ἄρα ἁ ΑΖ ποτὶ ΔΗ δυνάμει, οὕτως ἁ ΜΝ ποτὶ ΝΞ δυνάμει· ὥστε καὶ μάκει ἐν τῷ αὐτῷ λόγῳ. Καὶ ὡς ἄρα ὁ ἀπὸ ΑΖ κύβος ποτὶ τὸν ἀπὸ ΔΗ κύβον, οὕτως ὁ ἀπὸ ΜΝ κύβος ποτὶ τὸν ἀπὸ ΝΞ κύβον. Ἀλλ' ὡς μὲν ὁ ἀπὸ ΑΖ κύβος ποτὶ τὸν ἀπὸ ΔΗ κύβον, οὕτως τὸ ΑΒΓ τμᾶμα ποτὶ τὸ ΔΒΕ τμᾶμα, ὡς δὲ ὁ ἀπὸ ΜΝ κύβος ποτὶ τὸν ἀπὸ ΝΞ κύβον, οὕτως ἁ ΜΝ ποτὶ ΝΤ· ὥστε καὶ διελόντι ἐστὶν ὡς ὁ ΑΔΕΓ τόμος ποτὶ τὸ ΔΒΕ τμᾶμα, οὕτως ἁ ΜΤ ποτὶ ΝΤ, τουτέστι τὰ γ ε΄ τᾶς ΗΖ ποτὶ ΙΡ. Καὶ ἐπεὶ τὸ στερεὸν τὸ βάσιν μὲν ἔχον τὸ ἀπὸ ΑΖ τετράγωνον, ὕψος δὲ τὰν [123] συγκειμέναν ἔκ τε τᾶς διπλασίας τᾶς ΔΗ καὶ τᾶς ΑΖ, ποτὶ τὸν ἀπὸ ΑΖ κύβον λόγον ἔχει, ὃν ἁ διπλασία τᾶς ΔΗ μετὰ τᾶς ΑΖ ποτὶ ΖΑ, ὥστε καὶ ὃν ἁ διπλασία τᾶς ΝΞ μετὰ τᾶς ΝΜ ποτὶ ΝΜ, ἔστι δὲ καὶ ὡς ὁ ἀπὸ ΑΖ κύβος ποτὶ τὸν ἀπὸ ΔΗ κύβον, οὕτως ἁ ΜΝ ποτὶ ΝΤ, ὡς δὲ ὁ ἀπὸ ΔΗ κύβος ποτὶ τὸ στερεὸν τὸ βάσιν μὲν ἔχον τὸ ἀπὸ ΔΗ τετράγωνον, ὕψος δὲ τὰν συγκειμέναν ἔκ τε τᾶς διπλασίας τᾶς ΑΖ μετὰ τᾶς ΔΗ, οὕτως ἁ ΔΗ ποτὶ τὰν συγκειμέναν ἔκ τε τᾶς διπλασίας τᾶς ΑΖ καὶ τᾶς ΔΗ, ὥστε καὶ ἁ ΤΝ ποτὶ τὰν συγκειμέναν ἔκ τε τᾶς διπλασίας τᾶς ΟΝ καὶ τᾶς ΤΝ, γέγονεν οὖν τέσσαρα μεγέθεα, τὸ στερεὸν τὸ βάσιν μὲν ἔχον τὸ ἀπὸ ΑΖ τετράγωνον, ὕψος δὲ τὰν συγκειμέναν ἔκ τε τᾶς διπλασίας τᾶς ΔΗ καὶ τᾶς ΑΖ, καὶ ὁ ἀπὸ ΑΖ κύβος καὶ ὁ ἀπὸ ΔΗ κύβος καὶ τὸ στερεὸν τὸ βάσιν μὲν ἔχον τὸ ἀπὸ ΔΗ τετράγωνον, ὕψος δὲ τὰν συγκειμέναν ἔκ τε τᾶς διπλασίας τᾶς ΑΖ καὶ τᾶς ΔΗ, τέτταρσι μεγέθεσιν ἀνάλογον σύνδυο λαμβανομένοις, τᾷ τε συγκειμένᾳ ἔκ τε τᾶς διπλασίας τᾶς ΝΞ καὶ τᾶς ΝΜ καὶ ἑτέρῳ μεγέθει τᾷ ΜΝ καὶ ἄλλῳ ἑξῆς τᾷ ΝΤ καὶ τελευταῖον τᾷ συγκειμένᾳ ἔκ τε τᾶς διπλασίας τᾶς ΝΟ καὶ τᾶς ΝΤ· δι' ἴσου ἄρα γενήσεται ὡς τὸ στερεὸν τὸ βάσιν μὲν ἔχον τὸ ἀπὸ ΑΖ τετράγωνον, ὕψος δὲ τὰν συγκειμέναν ἔκ τε τᾶς διπλασίας τᾶς ΔΗ καὶ τᾶς ΑΖ, ποτὶ τὸ στερεὸν τὸ βάσιν μὲν ἔχον τὸ ἀπὸ ΔΗ τετράγωνον, ὕψος δὲ τὰν [124] συγκειμέναν ἔκ τε τᾶς διπλασίας τᾶς ΑΖ καὶ τᾶς ΔΗ, οὕτως ἁ συγκειμένα ἔκ τε τᾶς διπλασίας τᾶς ΝΞ καὶ τᾶς ΜΝ ποτὶ τὰν συγκειμέναν ἔκ τε τᾶς διπλασίας τᾶς ΝΟ καὶ τᾶς ΝΤ. Ἀλλ' ὡς τὸ εἰρημένον στερεὸν ποτὶ τὸ εἰρημένον στερεόν, οὕτως ἁ ΘΙ ποτὶ ΙΚ· καὶ ὡς ἄρα ἁ ΘΙ ποτὶ ΙΚ, οὕτως ἁ συγκειμένα ποτὶ τὰν συγκειμέναν· Ὥστε καὶ συνθέντι καὶ τῶν ἁγουμένων τὰ πενταπλάσια· ἔστιν ἄρα ὡς ἁ ΖΗ ποτὶ ΙΚ, οὕτως ἁ πενταπλασία συναμφοτέρου τᾶς ΜΝΤ καὶ δεκαπλασία συναμφοτέρου τᾶς ΝΞ, ΝΟ ποτὶ τὰν διπλασίαν τᾶς ΟΝ καὶ τὰν ΝΤ. Καὶ ὡς ἁ ΖΗ ποτὶ ΖΚ ἐοῦσαν αὐτᾶς δύο πέμπτα, οὕτως ἁ πενταπλασία συναμφοτέρου τᾶς ΜΝΤ καὶ δεκαπλασία συναμφοτέρου τᾶς ΞΝΟ ποτὶ τὰν διπλασίαν συναμφοτέρου τᾶς ΜΝΤ καὶ τετραπλασίαν συναμφοτέρου τᾶς ΞΝΟ· ἐσσεῖται οὖν ὡς ἁ ΖΗ ποτὶ ΖΙ, οὕτως ἁ πενταπλασία συναμφοτέρου τᾶς ΜΝΤ καὶ δεκαπλασία συναμφοτέρου τᾶς ΞΝΟ ποτὶ τὰν συγκειμέναν ἔκ τε τᾶς διπλασίας τᾶς ΜΝ καὶ τετραπλασίας τᾶς ΝΞ καὶ ἑξαπλασίας τᾶς ΟΝ καὶ τριπλασίας τᾶς ΝΤ. Ἐπεὶ οὖν τέσσαρες εὐθεῖαι ἑξῆς ἀνάλογον αἱ ΜΝ, ΝΞ, ΟΝ, ΝΤ, καί ἐστιν, ὡς μὲν ἁ ΝΤ ποτὶ ΤΜ, οὕτως λελαμμένα τις ἁ ΡΙ ποτὶ τὰ τρία πέμπτα τᾶς ΖΗ, τουτέστι τᾶς ΜΟ, ὡς δὲ ἁ συγκειμένα ἔκ τε τᾶς διπλασίας τᾶς ΝΜ καὶ τετραπλασίας τᾶς ΝΞ καὶ ἑξαπλασίας τᾶς ΝΟ καὶ τριπλασίας τᾶς ΝΤ ποτὶ τὰν συγκειμέναν ἔκ τε τᾶς πενταπλασίας συναμφοτέρου τᾶς ΜΝΤ καὶ δεκαπλασίας συναμφοτέρου τᾶς ΞΝΟ, οὕτως ἑτέρα τις [125] λελαμμένα ἁ ΙΖ ποτὶ τὰν ΖΗ, τουτέστιν ποτὶ τὰν ΜΟ, ἐσσεῖται διὰ τὰ πρότερον ἁ ΡΖ δύο πέμπτα τᾶς ΜΝ, τουτέστι τᾶς ΖΒ· ὥστε κέντρον βάρεός ἐστι τοῦ ΑΒΓ τμάματος τὸ Ρ σαμεῖον. Ἔστω δὴ καὶ τοῦ ΔΒΕ τμάματος κέντρον βάρεος τὸ Χ σαμεῖον. Τοῦ ἄρα ΑΔΕΓ τόμου ἐσσεῖται τὸ κέντρον τοῦ βάρεος ἐπὶ τᾶς ἐπ' εὐθείας τᾷ ΧΡ τὸν αὐτὸν ποτὶ αὐτὰν λόγον ἐχούσας, ὃν ἔχει ὁ τόμος ποτὶ τὸ λοιπὸν τμᾶμα. Ἔστιν δὲ τὸ Ι σαμεῖον. Ἐπεὶ γὰρ τᾶς μὲν ΖΒ τρία πέμπτα ἐστὶν ἁ ΒΡ, τᾶς δὲ ΗΒ τρία πέμπτα ἐστὶν ἁ ΒΧ, καὶ λοιπᾶς ἄρα τᾶς ΗΖ τρία πέμπτα ἐστὶν ἁ ΧΡ. Ἐπεὶ οὖν ἐστιν ὡς μὲν ὁ ΑΔΕΓ τόμος ποτὶ τὸ ΔΒΕ τμᾶμα, οὕτως ἁ ΜΤ ποτὶ ΤΝ, ὡς δὲ ἁ ΜΤ ποτὶ τὰν ΤΝ, οὕτως τὰ τρία πέμπτα τᾶς ΗΖ, ἅτις ἐστὶν ἁ ΧΡ, ποτὶ ΡΙ, ἐσσεῖται ἄρα καὶ ὡς ὁ ΑΔΕΓ τόμος ποτὶ τὸ ΔΒΕ τμᾶμα, οὕτως ἁ ΧΡ ποτὶ ΡΙ. Καί ἐστι τοῦ μὲν ὅλου τμάματος κέντρον τοῦ βάρεος τὸ Ρ σαμεῖον, τοῦ δὲ ΔΒΕ κέντρον βάρεος τὸ Χ· φανερὸν οὖν ὅτι καὶ τοῦ ΑΔΕΓ τόμου τὸ κέντρον τοῦ βάρεος τὸ Ι σαμεῖον.